Example #1
0
    def get_data_transforms(self):
        cfg = self.cfg
        bbox_params = self.get_bbox_params()
        transform = Compose([Resize(cfg.data.img_sz, cfg.data.img_sz)],
                            bbox_params=bbox_params)

        augmentors_dict = {
            'Blur': Blur(),
            'RandomRotate90': RandomRotate90(),
            'HorizontalFlip': HorizontalFlip(),
            'VerticalFlip': VerticalFlip(),
            'GaussianBlur': GaussianBlur(),
            'GaussNoise': GaussNoise(),
            'RGBShift': RGBShift(),
            'ToGray': ToGray()
        }
        aug_transforms = []
        for augmentor in cfg.data.augmentors:
            try:
                aug_transforms.append(augmentors_dict[augmentor])
            except KeyError as e:
                log.warning(
                    '{0} is an unknown augmentor. Continuing without {0}. \
                    Known augmentors are: {1}'.format(
                        e, list(augmentors_dict.keys())))
        aug_transforms.append(Resize(cfg.data.img_sz, cfg.data.img_sz))
        aug_transform = Compose(aug_transforms, bbox_params=bbox_params)

        return transform, aug_transform
Example #2
0
    def get_data_transforms(self) -> Tuple[BasicTransform, BasicTransform]:
        """Get albumentations transform objects for data augmentation.

        Returns:
           1st tuple arg: a transform that doesn't do any data augmentation
           2nd tuple arg: a transform with data augmentation
        """
        cfg = self.cfg
        bbox_params = self.get_bbox_params()
        transform = Compose([Resize(cfg.data.img_sz, cfg.data.img_sz)],
                            bbox_params=bbox_params)

        augmentors_dict = {
            'Blur': Blur(),
            'RandomRotate90': RandomRotate90(),
            'HorizontalFlip': HorizontalFlip(),
            'VerticalFlip': VerticalFlip(),
            'GaussianBlur': GaussianBlur(),
            'GaussNoise': GaussNoise(),
            'RGBShift': RGBShift(),
            'ToGray': ToGray()
        }
        aug_transforms = []
        for augmentor in cfg.data.augmentors:
            try:
                aug_transforms.append(augmentors_dict[augmentor])
            except KeyError as e:
                log.warning(
                    '{0} is an unknown augmentor. Continuing without {0}. \
                    Known augmentors are: {1}'.format(
                        e, list(augmentors_dict.keys())))
        aug_transforms.append(Resize(cfg.data.img_sz, cfg.data.img_sz))
        aug_transform = Compose(aug_transforms, bbox_params=bbox_params)

        return transform, aug_transform
Example #3
0
def get_train_transform(image_size, augmentation=None):
    if augmentation is None:
        augmentation = 'none'

    LEVELS = {
        'none': get_none_augmentations,
        'light': get_light_augmentations,
        'medium': get_medium_augmentations,
        'hard': get_hard_augmentations,
        'hard2': get_hard_augmentations_v2
    }

    assert augmentation in LEVELS.keys()
    augmentation = LEVELS[augmentation](image_size)

    longest_size = max(image_size[0], image_size[1])
    return A.Compose([
        Resize(int(config.img_height * 1.5), int(config.img_weight * 1.5)),
        CenterCrop(config.img_height, config.img_weight),
        A.LongestMaxSize(longest_size, interpolation=cv2.INTER_CUBIC),
        A.PadIfNeeded(image_size[0],
                      image_size[1],
                      border_mode=cv2.BORDER_CONSTANT,
                      value=0), augmentation,
        A.Normalize(),
        ToTensor()
    ])
Example #4
0
def main():

    # augmentation
    transform_aug = Compose([
        aug.HueSaturationValue(),
        aug.RandomBrightnessContrast(),
        aug.CLAHE(),
        aug.JpegCompression(),
        aug.GaussNoise(),
        aug.MedianBlur(),
        aug.ElasticTransform(),
        aug.HorizontalFlip(),
        aug.Rotate(),
        aug.CoarseDropout(),
        aug.RandomSizedCrop()
    ],
                            p=1)
    # transform for output
    transform = Compose([
        Resize(cons.IMAGE_SIZE, cons.IMAGE_SIZE),
        Normalize(
            mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), max_pixel_value=255.0)
    ],
                        p=1)

    # Dataset
    '''
    dataset = UkiyoeTrainDataset(
        train_images_path='data',
        train_labels_path='data',
        valid=False,
        confidence_boader=0.87,
        result_path='result/model_effi_b3/efficientnet_b3_980/inference_with_c.csv',
        test_images_path='data',
        over_sampling=False,
        transform_aug=None,
        augmix=False,
        mixup=False,
        transform=transform)
    img, label = dataset[0]
    #print(img.shape)
    #plt.imshow(img)
    #plt.show()
    '''
    # train data loader
    loader = load_train_data(train_images_path='data',
                             train_labels_path='data',
                             batch_size=2,
                             valid=False,
                             nfold=0,
                             transform_aug=None,
                             augmix=True,
                             mixup=False,
                             transform=transform,
                             as_numpy=True)
    image_batch, label_batch = next(loader.__iter__())
    print(image_batch[0].shape)
    print(label_batch[0].shape)
    '''
Example #5
0
 def val_transfrom(self, image, image_size):
     transform = Compose([
         Resize(image_size, image_size, interpolation=cv2.INTER_AREA),
         Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
         ToTensorV2()
     ])
     image_transform = transform(image=image)['image']
     return image_transform
Example #6
0
 def __init__(self, root_dir, transform=None):
     self.root_dir = root_dir
     self.fg_fns = os.listdir(Path(root_dir / 'fg'))
     self.bg_fns = os.listdir(Path(root_dir / 'bg'))
     self.rc320 = RandomCrop(height=320, width=320, always_apply=True)
     self.rc480 = RandomCrop(height=480, width=480, always_apply=True)
     self.rc640 = RandomCrop(height=640, width=640, always_apply=True)
     self.resize = Resize(height=320, width=320, always_apply=True)
     self.flip = Flip(p=.75)
Example #7
0
def train_transfrom(image, size=256):
    transform = Compose([
        Resize(size, size, interpolation=cv2.INTER_AREA),
        Flip(),
        RandomBrightnessContrast(),
        HueSaturationValue(),
        Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
        ToTensorV2()
    ])
    image_transform = transform(image=image)['image']

    return image_transform
Example #8
0
def test_transfrom(
    image,
    size=256
):  # note that test image size is same as crop_size in get_transfrom
    transform = Compose([
        Resize(size, size, interpolation=cv2.INTER_AREA),
        Normalize(mean=[0.3835, 0.3737, 0.3698], std=[1.0265, 1.0440, 1.0499]),
        ToTensorV2()
    ])
    image_transform = transform(image=image)['image']

    return image_transform
def base_transform(height, width, mappings, p=2 / 3):
    return Compose([
        OneOf([
            JpegCompression(quality_lower=20, quality_upper=70, p=0.5),
            Downscale(scale_min=0.25, scale_max=0.50, interpolation=1, p=0.5),
            Resize(height // 4, width // 4, interpolation=1, p=0.5)
        ],
              p=1.0),
        HorizontalFlip(p=0.5)
    ],
                   p=p,
                   additional_targets=mappings)
Example #10
0
def main(argv=None):

    loader = load_test_data(
        data_path=FLAGS.test_images_path,
        batch_size=1,
        transform=Compose([
            Resize(cons.IMAGE_SIZE,cons.IMAGE_SIZE),
            Normalize(mean=(0.5,0.5,0.5),std=(0.5,0.5,0.5),max_pixel_value=255.0)]))
    data_len = UkiyoeTestDataset(data_path=FLAGS.test_images_path).__len__()

    confidence_sum = np.zeros((data_len,cons.NUM_CLASSES))
    ratio_sum = 0
    for e in range(len(PARAM_LIST)):
        ratio_sum = ratio_sum + PARAM_LIST[e]['ratio']
        PARAM_PATH = FLAGS.params_path + PARAM_LIST[e]['model']
        model = models.get_model(model_name=PARAM_LIST[e]['model'].split('/')[2],num_classes=cons.NUM_CLASSES)
        if PARAM_LIST[e]['fix']:
            model.load_state_dict(fix_model_state_dict(torch.load(PARAM_PATH)))
        else:
            model.load_state_dict(torch.load(PARAM_PATH))
        confidence_sum = confidence_sum + inference_loop(model,loader,data_len)*PARAM_LIST[e]['ratio']
    pred = np.argmax(confidence_sum, axis=1)
    confidence = confidence_sum/ratio_sum
    if FLAGS.adjust_inference:
        pred = adjust_inference(pred,confidence,data_len)

    result = pd.DataFrame(columns=['id','y'])
    if FLAGS.output_confidence:
        result_with_c = pd.DataFrame(columns=['id','y','confidence'])
    
    for idx,feed in enumerate(loader):
        id,_ = feed
        result = result.append(
            pd.Series(
                [id.data.numpy()[0], pred[idx]],
                index=result.columns),
            ignore_index=True)
        if FLAGS.output_confidence:
            result_with_c = result_with_c.append(
                pd.Series(
                    [id.data.numpy()[0], pred[idx], confidence[idx,pred[idx]]],
                    index=result_with_c.columns),
                ignore_index=True)

    RESULT_DIR = FLAGS.result_path +'/'+ FLAGS.case
    os.makedirs(RESULT_DIR,exist_ok=True)
    result.to_csv(RESULT_DIR +'/inference.csv', index=False)
    if FLAGS.output_confidence:
        result_with_c[['id','y']] = result_with_c[['id','y']].astype(int)
        result_with_c.to_csv(RESULT_DIR +'/inference_with_c.csv', index=False)    
Example #11
0
def get_transfrom(image, size=512, crop_size=256):
    transform = Compose([
        Resize(size, size, interpolation=cv2.INTER_AREA),
        RandomCrop(crop_size, crop_size),
        Cutout(num_holes=4),
        HueSaturationValue(hue_shift_limit=0.2,
                           sat_shift_limit=0.2,
                           val_shift_limit=0.2),
        RandomBrightnessContrast(brightness_limit=0.2, contrast_limit=0.2),
        Flip(),
        Normalize(mean=[0.3835, 0.3737, 0.3698], std=[1.0265, 1.0440, 1.0499]),
        ToTensorV2()
    ])
    image_transform = transform(image=image)['image']

    return image_transform
Example #12
0
def main(argv=None):

    PARAM_PATH = FLAGS.params_path + '/' + FLAGS.case + '/' + FLAGS.model_name + '/fold' + str(
        FLAGS.nfold)
    RESULT_DIR = FLAGS.result_path + '/' + FLAGS.case + '/' + FLAGS.model_name
    if FLAGS.pseudo_labeling:
        PARAM_PATH = PARAM_PATH + '/with_pseudo_labeling'
        RESULT_DIR = RESULT_DIR + '/with_pseudo_labeling'
    PARAM_PATH = PARAM_PATH + '/' + FLAGS.case
    RESULT_DIR = RESULT_DIR + '/' + FLAGS.case
    if FLAGS.is_best_param:
        PARAM_PATH = PARAM_PATH + '_best'
        RESULT_DIR = RESULT_DIR + '_best'
    else:
        PARAM_PATH = PARAM_PATH + '_' + str(FLAGS.executed_epoch)
        RESULT_DIR = RESULT_DIR + '_' + str(FLAGS.executed_epoch)
        if FLAGS.is_final_epoch:
            PARAM_PATH = PARAM_PATH + '_final'
            RESULT_DIR = RESULT_DIR + '_final'
    PARAM_PATH = PARAM_PATH + '.pth'

    loader = load_test_data(data_path=FLAGS.test_images_path,
                            batch_size=1,
                            transform=Compose([
                                Resize(cons.IMAGE_SIZE, cons.IMAGE_SIZE),
                                Normalize(mean=(0.5, 0.5, 0.5),
                                          std=(0.5, 0.5, 0.5),
                                          max_pixel_value=255.0)
                            ]))
    model = models.get_model(model_name=FLAGS.model_name,
                             num_classes=cons.NUM_CLASSES)
    if FLAGS.fix_state_dict:
        model.load_state_dict(fix_model_state_dict(torch.load(PARAM_PATH)))
    else:
        model.load_state_dict(torch.load(PARAM_PATH))

    result = inference_loop(model, loader, FLAGS.output_confidence)

    os.makedirs(RESULT_DIR, exist_ok=True)
    result.to_csv(RESULT_DIR + '/inference.csv', index=False)
    if FLAGS.output_confidence:
        result.to_csv(RESULT_DIR + '/inference_with_c.csv', index=False)
Example #13
0
    def transform(self, img: t.Any) -> t.Any:
        max_hw = max(img.shape[0:2])
        img = PadIfNeeded(max_hw, max_hw, border_mode=cv2.BORDER_REPLICATE)(image=img)[
            "image"
        ]
        img = Resize(self.resolution, self.resolution)(image=img)["image"]
        img = Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225],)(
            image=img
        )["image"]

        if self.mode == "Train":
            img = RandomResizedCrop(self.resolution, self.resolution)(image=img)[
                "image"
            ]
            img = Cutout(p=0.2)(image=img)["image"]
            img = HorizontalFlip(p=0.5)(image=img)["image"]
            img = ShiftScaleRotate(
                shift_limit=0.1, scale_limit=0.0, rotate_limit=10, p=0.3
            )(image=img)["image"]
        img = ToTensorV2()(image=img)["image"]
        return img
def even_more_transform(height, width, mappings, p=2 / 3):
    scale = random.randint(2, 4)
    return Compose([
        OneOf([
            JpegCompression(quality_lower=20, quality_upper=70, p=0.5),
            Downscale(scale_min=0.25, scale_max=0.50, interpolation=1, p=0.5),
            Resize(height // scale, width // scale, interpolation=1, p=1.0)
        ],
              p=0.6),
        HorizontalFlip(p=0.5),
        A.augmentations.transforms.GaussNoise(p=0.2),
        A.RandomBrightnessContrast(p=0.2),
        A.RandomGamma(p=0.2),
        A.CLAHE(p=0.2),
        A.ChannelShuffle(p=0.2),
        A.MultiplicativeNoise(multiplier=[0.5, 1.5], elementwise=True, p=0.1),
        A.HueSaturationValue(
            hue_shift_limit=10, sat_shift_limit=10, val_shift_limit=10, p=0.2),
    ],
                   p=0.9,
                   additional_targets=mappings)
Example #15
0
def preprocess(resize):
    return Compose([
        Resize(height=resize, width=resize, p=1),
        Lambda(image=preprocess_input)
    ],
                   p=1)  # always apply
    def __getitem__(self, index: int):

        while True:
            video, img_file, label, ori_video, frame, fold = self.data[index]
            try:
                if self.mode == "train":
                    label = np.clip(label, self.label_smoothing,
                                    1 - self.label_smoothing)
                img_path = os.path.join(self.data_root, self.crops_dir, video,
                                        img_file)
                image = cv2.imread(img_path, cv2.IMREAD_COLOR)
                image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

                image_width, image_height = image.shape[:2]

                mask = np.zeros(image.shape[:2], dtype=np.uint8)
                diff_path = os.path.join(self.data_root, "diffs", video,
                                         img_file[:-4] + "_diff.png")
                landmark_path = os.path.join(self.data_root, "landmarks",
                                             ori_video, img_file[:-4] + ".npy")

                try:
                    msk = cv2.imread(diff_path, cv2.IMREAD_GRAYSCALE)
                    if msk is not None:
                        mask = msk
                except:
                    print("not found mask", diff_path)
                    pass
                if self.mode == "train" and self.hardcore and not self.rotation:
                    if os.path.exists(landmark_path) and random.random() < 0.7:
                        landmarks = np.load(landmark_path)
                        image = remove_landmark(image, landmarks)
                    elif random.random() < 0.2:
                        blackout_convex_hull(image)
                    elif random.random() < 0.1:
                        binary_mask = mask > 0.4 * 255
                        masks = prepare_bit_masks(
                            (binary_mask * 1).astype(np.uint8))
                        tries = 6
                        current_try = 1
                        while current_try < tries:
                            bitmap_msk = random.choice(masks)
                            if label < 0.5 or np.count_nonzero(
                                    mask * bitmap_msk) > 20:
                                mask *= bitmap_msk
                                image *= np.expand_dims(bitmap_msk, axis=-1)
                                break
                            current_try += 1
                if self.mode == "train" and self.padding_part > 3:
                    image = change_padding(image, self.padding_part)
                valid_label = np.count_nonzero(
                    mask[mask > 20]) > 32 or label < 0.5
                valid_label = 1 if valid_label else 0
                rotation = 0
                if self.transforms:
                    data = self.transforms(image=image, mask=mask)
                    image = data["image"]
                    mask = data["mask"]
                if self.mode == "train" and self.hardcore and self.rotation:
                    # landmark_path = os.path.join(self.data_root, "landmarks", ori_video, img_file[:-4] + ".npy")
                    dropout = 0.8 if label > 0.5 else 0.6
                    if self.rotation:
                        dropout *= 0.7
                    elif random.random() < dropout:
                        blackout_random(image, mask, label)

                #
                # os.makedirs("../images", exist_ok=True)
                # cv2.imwrite(os.path.join("../images", video+ "_" + str(1 if label > 0.5 else 0) + "_"+img_file), image[...,::-1])

                if self.mode == "train" and self.rotation:
                    rotation = random.randint(0, 3)
                    image = rot90(image, rotation)

                image = img_to_tensor(image, self.normalize)

                # assuming the image size is 380*380
                image_size = 380
                image = Resize(image_size, image_size)
                rect = detector(img)[0]
                x = rect.left()
                y = rect.top()
                w = rect.right() - x
                h = rect.buttom() - y

                top_left = np.array([x, y])
                top_right = np.array([x + w, y])
                bottom_left = np.array([x, y + h])
                bottom_right = np.array([x + w, y + h])

                # insert the face rectangle points into the landmark data
                landmark = np.insert(landmark, 0, top_left, axis=0)
                landmark = np.insert(landmark, 0, top_right, axis=0)
                landmark = np.insert(landmark, 0, bottom_left, axis=0)
                landmark = np.insert(landmark, 0, bottom_right, axis=0)

                # perform scaling for the landmark
                for i in landmark:
                    i[0] = round(image_size * (i[0] / image_width))
                    i[1] = round(image_size * (i[1] / image_height))

                return {
                    "image": image,
                    "labels": np.array((label, )),
                    "img_name": os.path.join(video, img_file),
                    "valid": valid_label,
                    "rotations": rotation,
                    "landmark": landmark
                }
            except Exception as e:
                traceback.print_exc(file=sys.stdout)
                print(
                    "Broken image",
                    os.path.join(self.data_root, self.crops_dir, video,
                                 img_file))
                index = random.randint(0, len(self.data) - 1)
 def transform(height, width, mappings, p=1.0):
     return Compose([
         Resize(height//4,width//4, interpolation=1, p=1.0)
     ], p=p,
     additional_targets=mappings)
Example #18
0
from albumentations import (
    HorizontalFlip, IAAPerspective, ShiftScaleRotate, CLAHE, RandomRotate90,
    Transpose, Blur, OpticalDistortion, GridDistortion, HueSaturationValue,
    IAAAdditiveGaussianNoise, GaussNoise, MotionBlur, MedianBlur, IAAPiecewiseAffine,
    IAASharpen, IAAEmboss, RandomContrast, RandomBrightness, Flip, OneOf, Compose, RandomGamma, 
    ElasticTransform, ChannelShuffle,RGBShift, Rotate, Cutout
)

# YOUR PATH
path = f'/mnt/c/Users/bokhy/Desktop/Python/github/kaggle/bengaliai-cv19/input/'
HEIGHT = 137
WIDTH = 236
# Augmentation
train_augmentation = Compose([
        Resize(HEIGHT,WIDTH, always_apply= True),
        Normalize(mean, std, always_apply = True),
        Rotate(),
        Flip(),
        OneOf([
            IAAAdditiveGaussianNoise(),
            GaussNoise(),
        ], p=0.2),
        OneOf([
            MotionBlur(p=0.2),
            MedianBlur(blur_limit=3, p=0.1),
            Blur(blur_limit=3, p=0.1),
        ], p=0.2),
        ShiftScaleRotate(shift_limit=0.0625, scale_limit=0.2, rotate_limit=45, p=.2),
        OneOf([
            OpticalDistortion(p=0.3),
import albumentations
from albumentations.augmentations.transforms import Resize, RandomSizedCrop, ShiftScaleRotate, HorizontalFlip, Normalize, RandomBrightnessContrast, MotionBlur, Blur, GaussNoise, JpegCompression

train_transform = albumentations.Compose([
                                          RandomSizedCrop(min_max_height=(input_size//3,input_size//3),height=input_size,width=input_size),
                                          ShiftScaleRotate(p=0.3, scale_limit=0.25, border_mode=1, rotate_limit=25),
                                          HorizontalFlip(p=0.2),
                                          RandomBrightnessContrast(p=0.3, brightness_limit=0.25, contrast_limit=0.5),
                                          MotionBlur(p=.2),
                                          GaussNoise(p=.2),
                                          JpegCompression(p=.2, quality_lower=50),
                                          Normalize(mean=[0.485, 0.456, 0.406],
                                    std=[0.229, 0.224, 0.225])
])
val_transform = albumentations.Compose([
                                        Resize(input_size,input_size),
                                        Normalize(mean=[0.485, 0.456, 0.406],
                                    std=[0.229, 0.224, 0.225])
])

class MyDataset(data.Dataset):
    def __init__(self,root,transforms = None,is_train=True):
        """
        主要目标获取所有图片的地址
        """
        fake_path = os.path.join(root,"fake")
        real_path = os.path.join(root,"real")

        fake_imgs = [os.path.join(fake_path,each) for each in os.listdir(fake_path) if each.endswith(".jpg") or each.endswith(".png") or each.endswith(".jpeg") or each.endswith(".JPG")]
        real_imgs = [os.path.join(real_path,each) for each in os.listdir(real_path) if each.endswith(".jpg") or each.endswith(".png") or each.endswith(".jpeg") or each.endswith(".JPG")]
        imgs = fake_imgs+real_imgs
Example #20
0
def main(argv=None):

    transform = Compose([
        Resize(cons.IMAGE_SIZE, cons.IMAGE_SIZE),
        Normalize(mean=(0.5, 0.5, 0.5),
                  std=(0.5, 0.5, 0.5),
                  max_pixel_value=255.0)
    ])
    valid_loader = load_train_data(train_images_path=FLAGS.train_images_path,
                                   train_labels_path=FLAGS.train_labels_path,
                                   batch_size=FLAGS.batch_size,
                                   num_worker=FLAGS.num_worker,
                                   valid=True,
                                   nfold=FLAGS.nfold,
                                   transform=transform)

    model = models.get_model(model_name=FLAGS.model_name,
                             num_classes=cons.NUM_CLASSES)
    model.cuda()
    #model = torch.nn.DataParallel(model)

    DIR = '/' + FLAGS.case + '/' + FLAGS.model_name + '/fold' + str(
        FLAGS.nfold)
    RESULT_PATH = ''
    if FLAGS.confidence_border is not None:
        DIR = DIR + '/with_pseudo_labeling'
        RESULT_PATH = RESULT_PATH + FLAGS.result_path
        if FLAGS.result_case is not None:
            RESULT_PATH = RESULT_PATH + '/' + FLAGS.result_case
        RESULT_PATH = RESULT_PATH + '/inference_with_c.csv'

    PARAM_DIR = FLAGS.params_path + DIR
    os.makedirs(PARAM_DIR, exist_ok=True)
    PARAM_NAME = PARAM_DIR + '/' + FLAGS.case
    if FLAGS.executed_epoch > 0:
        TRAINED_PARAM_PATH = FLAGS.restart_param_path + '/' + FLAGS.case + str(
            FLAGS.executed_epoch)
        restart_epoch = FLAGS.executed_epoch + 1
        if FLAGS.restart_from_final:
            TRAINED_PARAM_PATH = TRAINED_PARAM_PATH + '_final'
        TRAINED_PARAM_PATH = TRAINED_PARAM_PATH + '.pth'
        model.load_state_dict(torch.load(TRAINED_PARAM_PATH))
    else:
        restart_epoch = 0

    optimizer = optim.Adam(model.parameters(), lr=cons.start_lr)
    model, optimizer = amp.initialize(model,
                                      optimizer,
                                      opt_level=FLAGS.opt_level)

    if FLAGS.add_class_weight:
        loader = load_train_data(train_images_path=FLAGS.train_images_path,
                                 train_labels_path=FLAGS.train_labels_path,
                                 batch_size=FLAGS.batch_size,
                                 num_worker=FLAGS.num_worker,
                                 nfold=FLAGS.nfold)
        count_label = np.zeros(10, dtype=np.int64)
        for feed in loader:
            _, labels = feed
            count_label += np.sum(labels.numpy().astype(np.int64), axis=0)
        weight = torch.from_numpy(count_label).cuda()
    else:
        weight = None
    criterion = nn.BCEWithLogitsLoss(weight=weight)

    writer = SummaryWriter(log_dir=FLAGS.logs_path + DIR + '/tensorboardX/')
    best_acc = 0

    if FLAGS.augmentation and FLAGS.aug_decrease:
        p = 0.5

        for e in range(restart_epoch, FLAGS.final_epoch):
            p_partical = p * (FLAGS.final_epoch - e) / FLAGS.final_epoch

            lr = set_lr.cosine_annealing(optimizer, cons.start_lr, e, 100)
            writer.add_scalar('LearningRate', lr, e)

            train_loader = load_train_data(
                train_images_path=FLAGS.train_images_path,
                train_labels_path=FLAGS.train_labels_path,
                batch_size=FLAGS.batch_size,
                num_worker=FLAGS.num_worker,
                nfold=FLAGS.nfold,
                confidence_border=FLAGS.confidence_border,
                result_path=RESULT_PATH,
                test_images_path=FLAGS.test_images_path,
                over_sampling=FLAGS.over_sampling,
                transform_aug=Compose([
                    aug.HueSaturationValue(p=p_partical),
                    aug.RandomBrightnessContrast(p=p_partical),
                    aug.CLAHE(p=p_partical),
                    aug.JpegCompression(p=p_partical),
                    aug.GaussNoise(p=p),
                    aug.MedianBlur(p=p),
                    aug.ElasticTransform(p=p_partical),
                    aug.HorizontalFlip(p=p),
                    aug.Rotate(p=p),
                    aug.CoarseDropout(p=p_partical),
                    aug.RandomSizedCrop(p=p)
                ]),
                mixup=FLAGS.mixup,
                transform=transform)

            train_loss = train_loop(model, train_loader, criterion, optimizer)
            writer.add_scalar('train_loss', train_loss, e)

            valid_loss, valid_acc = valid_loop(model, valid_loader, criterion)
            writer.add_scalar('valid_loss', valid_loss, e)
            writer.add_scalar('valid_acc', valid_acc, e)

            print(
                'Epoch: {}, Train Loss: {:.4f}, Valid Loss: {:.4f}, Valid Accuracy:{:.2f}'
                .format(e + 1, train_loss, valid_loss, valid_acc))
            if e % 10 == 0:
                torch.save(model.state_dict(),
                           PARAM_NAME + '_' + str(e) + '.pth')
            if valid_acc > best_acc:
                best_acc = valid_acc
                torch.save(model.state_dict(), PARAM_NAME + '_best.pth')
    else:

        if FLAGS.augmentation and not FLAGS.augmix:
            transform_aug = Compose([
                aug.HueSaturationValue(),
                aug.RandomBrightnessContrast(),
                aug.CLAHE(),
                aug.JpegCompression(),
                aug.GaussNoise(),
                aug.MedianBlur(),
                aug.ElasticTransform(),
                aug.HorizontalFlip(),
                aug.Rotate(),
                aug.CoarseDropout(),
                aug.RandomSizedCrop()
            ])
        else:
            transform_aug = None

        train_loader = load_train_data(
            train_images_path=FLAGS.train_images_path,
            train_labels_path=FLAGS.train_labels_path,
            batch_size=FLAGS.batch_size,
            num_worker=FLAGS.num_worker,
            valid=False,
            nfold=FLAGS.nfold,
            over_sampling=FLAGS.over_sampling,
            transform_aug=transform_aug,
            augmix=FLAGS.augmix,
            mixup=FLAGS.mixup,
            transform=transform)

        total_time = 0
        for e in range(restart_epoch, FLAGS.final_epoch):
            start = time.time()
            lr = set_lr.cosine_annealing(optimizer, cons.start_lr, e, 100)
            writer.add_scalar('LearningRate', lr, e)
            train_loss = train_loop(model, train_loader, criterion, optimizer)
            writer.add_scalar('train_loss', train_loss, e)
            valid_loss, valid_acc = valid_loop(model, valid_loader, criterion)
            writer.add_scalar('valid_loss', valid_loss, e)
            writer.add_scalar('valid_acc', valid_acc, e)
            print(
                'Epoch: {}, Train Loss: {:.4f}, Valid Loss: {:.4f}, Valid Accuracy:{:.2f}'
                .format(e + 1, train_loss, valid_loss, valid_acc))
            if e % 10 == 0:
                torch.save(model.state_dict(),
                           PARAM_NAME + '_' + str(e) + '.pth')
            if valid_acc > best_acc:
                best_acc = valid_acc
                torch.save(model.state_dict(), PARAM_NAME + '_best.pth')
            total_time = total_time + (time.time() - start)
            print('average time: {}[sec]'.format(total_time / (e + 1)))

    torch.save(model.state_dict(),
               PARAM_NAME + '_' + str(FLAGS.final_epoch - 1) + '_final.pth')
Example #21
0
def main():
    global args, config, best_loss
    args = parser.parse_args()

    with open(args.config) as f:
        config = yaml.load(f)

    for k, v in config['common'].items():
        setattr(args, k, v)
    config = EasyDict(config['common'])

    rank, world_size, device_id = dist_init(
        os.path.join(args.distributed_path, config.distributed_file))

    args.save_path_dated = args.save_path + '/' + args.datetime
    if args.run_tag != '':
        args.save_path_dated += '-' + args.run_tag

    # create model
    model = model_entry(config.model)
    model.cuda()

    model = nn.parallel.DistributedDataParallel(model, device_ids=[device_id])

    # create optimizer
    opt_config = config.optimizer
    opt_config.kwargs.lr = config.lr_scheduler.base_lr
    opt_config.kwargs.params = model.parameters()

    optimizer = optim_entry(opt_config)

    # optionally resume from a checkpoint
    last_iter = -1
    best_loss = 1e9
    if args.load_path:
        if args.recover:
            best_loss, last_iter = load_state(args.load_path,
                                              model,
                                              optimizer=optimizer)
        else:
            load_state(args.load_path, model)

    cudnn.benchmark = True

    # train augmentation
    if config.augmentation.get('imgnet_mean', False):
        model_mean = (0.485, 0.456, 0.406)
        model_std = (0.229, 0.224, 0.225)
    else:
        model_mean = (0.5, 0.5, 0.5)
        model_std = (0.5, 0.5, 0.5)
    trans = albumentations.Compose([
        RandomResizedCrop(config.augmentation.input_size,
                          config.augmentation.input_size,
                          scale=(config.augmentation.min_scale**2., 1.),
                          ratio=(1., 1.)),
        HorizontalFlip(p=0.5),
        RandomBrightnessContrast(brightness_limit=0.25,
                                 contrast_limit=0.1,
                                 p=0.5),
        JpegCompression(p=.2, quality_lower=50),
        MotionBlur(p=0.5),
        Normalize(mean=model_mean, std=model_std),
        ToTensorV2()
    ])

    train_dataset = FaceDataset(config.train_root,
                                config.train_source,
                                transform=trans,
                                resize=config.augmentation.input_size,
                                image_format=config.get('image_format', None),
                                random_frame=config.get(
                                    'train_random_frame', False),
                                bgr=config.augmentation.get('bgr', False))

    train_sampler = DistributedGivenIterationSampler(
        train_dataset,
        config.lr_scheduler.max_iter,
        config.batch_size,
        last_iter=last_iter)
    train_loader = DataLoader(train_dataset,
                              batch_size=config.batch_size,
                              shuffle=False,
                              num_workers=config.workers,
                              pin_memory=True,
                              sampler=train_sampler)

    # validation augmentation
    trans = albumentations.Compose([
        Resize(config.augmentation.input_size, config.augmentation.input_size),
        Normalize(mean=model_mean, std=model_std),
        ToTensorV2()
    ])
    val_multi_loader = []
    if args.val_source != '':
        for dataset_idx in range(len(args.val_source)):
            val_dataset = FaceDataset(
                args.val_root[dataset_idx],
                args.val_source[dataset_idx],
                transform=trans,
                output_index=True,
                resize=config.augmentation.input_size,
                image_format=config.get('image_format', None),
                bgr=config.augmentation.get('bgr', False))
            val_sampler = DistributedSampler(val_dataset, round_up=False)
            val_loader = DataLoader(val_dataset,
                                    batch_size=config.batch_size,
                                    shuffle=False,
                                    num_workers=config.workers,
                                    pin_memory=True,
                                    sampler=val_sampler)
            val_multi_loader.append(val_loader)

    config.lr_scheduler['optimizer'] = optimizer
    config.lr_scheduler['last_iter'] = last_iter
    lr_scheduler = get_scheduler(config.lr_scheduler)

    if rank == 0:
        mkdir(args.save_path)

        mkdir(args.save_path_dated)
        tb_logger = SummaryWriter(args.save_path_dated)

        logger = create_logger('global_logger',
                               args.save_path_dated + '-log.txt')
        logger.info('{}'.format(args))
        logger.info(model)
        logger.info(parameters_string(model))
        logger.info('len(train dataset) = %d' % len(train_loader.dataset))
        for dataset_idx in range(len(val_multi_loader)):
            logger.info(
                'len(val%d dataset) = %d' %
                (dataset_idx, len(val_multi_loader[dataset_idx].dataset)))

        mkdir(args.save_path_dated + '/saves')
    else:
        tb_logger = None

    positive_weight = config.get('positive_weight', 0.5)
    weight = torch.tensor([1. - positive_weight, positive_weight]) * 2.
    if rank == 0:
        logger.info('using class weights: {}'.format(weight.tolist()))

    criterion = nn.CrossEntropyLoss(weight=weight).cuda()

    if args.evaluate:
        if args.evaluate_path:
            all_ckpt = get_all_checkpoint(args.evaluate_path, args.range_list,
                                          rank)

            for ckpt in all_ckpt:
                if rank == 0:
                    logger.info('Testing ckpt: ' + ckpt)
                last_iter = -1
                _, last_iter = load_state(ckpt, model, optimizer=optimizer)
                for dataset_idx in range(len(val_multi_loader)):
                    validate(dataset_idx,
                             val_multi_loader[dataset_idx],
                             model,
                             criterion,
                             tb_logger,
                             curr_step=last_iter,
                             save_softmax=True)
        else:
            for dataset_idx in range(len(val_multi_loader)):
                validate(dataset_idx,
                         val_multi_loader[dataset_idx],
                         model,
                         criterion,
                         tb_logger,
                         curr_step=last_iter,
                         save_softmax=True)

        return

    train(train_loader, val_multi_loader, model, criterion, optimizer,
          lr_scheduler, last_iter + 1, tb_logger)
    return
Example #22
0
def train_transform(h, w):
    return A.Compose([
        Resize(h, w),
        A.Normalize(),
        ToTensorV2(),
    ])
Example #23
0
train_df, val_df = train_test_split(train,
                                    test_size=0.1,
                                    random_state=seed,
                                    stratify=train.iloc[:, 0])

train_df = train_df.reset_index(drop=True)
val_df = val_df.reset_index(drop=True)

train_augmentations = Compose([
    albumentations.OneOf([
        GridMask(num_grid=3, mode=0, rotate=15),
        GridMask(num_grid=3, mode=2, rotate=15),
    ],
                         p=0.7),
    RandomAugMix(severity=4, width=3, alpha=1.0, p=0.7),
    Resize(*img_size),
    ShiftScaleRotate(shift_limit=0, scale_limit=0, rotate_limit=10, p=0.5),
    ToFloat(max_value=255),
    ToTensor()
],
                              p=1)
val_augmentations = Compose(
    [Resize(*img_size), ToFloat(max_value=255),
     ToTensor()], p=1)

train_dataset = digitdataset(data=train_df, transform=train_augmentations)
val_dataset = digitdataset(data=val_df, transform=val_augmentations)

# =============================================================================
# image , label = train_dataset.__getitem__(15)
#