def get_light_augmentations(image_size):
    return A.Compose([
        A.ShiftScaleRotate(shift_limit=0.05,
                           scale_limit=0.1,
                           rotate_limit=15,
                           border_mode=cv2.BORDER_CONSTANT,
                           value=0),
        A.RandomSizedCrop(min_max_height=(int(image_size[0] * 0.85),
                                          image_size[0]),
                          height=image_size[0],
                          width=image_size[1],
                          p=0.3),
        ZeroTopAndBottom(p=0.3),
        # Brightness/contrast augmentations
        A.OneOf([
            A.RandomBrightnessContrast(brightness_limit=0.25,
                                       contrast_limit=0.2),
            IndependentRandomBrightnessContrast(brightness_limit=0.1,
                                                contrast_limit=0.1),
            A.RandomGamma(gamma_limit=(75, 125)),
            A.NoOp()
        ]),
        A.OneOf([ChannelIndependentCLAHE(p=0.5),
                 A.CLAHE(),
                 A.NoOp()]),
        A.HorizontalFlip(p=0.5),
    ])
Example #2
0
def get_medium_augmentations(image_size):
    return A.Compose([
        A.OneOf([
            A.ShiftScaleRotate(shift_limit=0.05,
                               scale_limit=0.1,
                               rotate_limit=15,
                               border_mode=cv2.BORDER_CONSTANT,
                               value=0),
            A.OpticalDistortion(distort_limit=0.11,
                                shift_limit=0.15,
                                border_mode=cv2.BORDER_CONSTANT,
                                value=0),
            A.NoOp()
        ]),
        A.RandomSizedCrop(min_max_height=(int(image_size[0] * 0.75),
                                          image_size[0]),
                          height=image_size[0],
                          width=image_size[1],
                          p=0.3),
        A.OneOf([
            A.RandomBrightnessContrast(brightness_limit=0.5,
                                       contrast_limit=0.4),
            IndependentRandomBrightnessContrast(brightness_limit=0.25,
                                                contrast_limit=0.24),
            A.RandomGamma(gamma_limit=(50, 150)),
            A.NoOp()
        ]),
        A.OneOf([
            A.RGBShift(r_shift_limit=20, b_shift_limit=15, g_shift_limit=15),
            A.HueSaturationValue(hue_shift_limit=5, sat_shift_limit=5),
            A.NoOp()
        ]),
        A.HorizontalFlip(p=0.5),
        A.VerticalFlip(p=0.5)
    ])
def hard_spatial_augmentations(image_size: Tuple[int, int], rot_angle=45):
    return A.Compose([
        A.OneOf([
            A.NoOp(),
            A.RandomGridShuffle(grid=(4, 4)),
            A.RandomGridShuffle(grid=(3, 3)),
            A.RandomGridShuffle(grid=(2, 2)),
        ]),
        A.MaskDropout(max_objects=10),
        A.OneOf([
            A.ShiftScaleRotate(scale_limit=0.1,
                               rotate_limit=rot_angle,
                               border_mode=cv2.BORDER_CONSTANT,
                               value=0,
                               mask_value=0),
            A.NoOp(),
        ]),
        A.OneOf([
            A.ElasticTransform(border_mode=cv2.BORDER_CONSTANT,
                               value=0,
                               mask_value=0),
            A.GridDistortion(border_mode=cv2.BORDER_CONSTANT,
                             value=0,
                             mask_value=0),
            A.NoOp(),
        ]),
        # D4
        A.Compose([A.Transpose(), A.RandomRotate90()]),
    ])
def medium_augmentations():
    return A.Compose([
        A.HorizontalFlip(),
        A.ShiftScaleRotate(scale_limit=0.1,
                           rotate_limit=15,
                           border_mode=cv2.BORDER_CONSTANT),
        # Add occasion blur/sharpening
        A.OneOf([A.GaussianBlur(), A.IAASharpen(),
                 A.NoOp()]),
        # Spatial-preserving augmentations:
        A.OneOf([A.CoarseDropout(),
                 A.MaskDropout(max_objects=5),
                 A.NoOp()]),
        A.GaussNoise(),
        A.OneOf([
            A.RandomBrightnessContrast(),
            A.CLAHE(),
            A.HueSaturationValue(),
            A.RGBShift(),
            A.RandomGamma()
        ]),
        # Weather effects
        A.RandomFog(fog_coef_lower=0.01, fog_coef_upper=0.3, p=0.1),
        A.Normalize(),
    ])
def get_individual_transforms():
    transforms = A.Compose([
        A.OneOf(
            [
                A.Transpose(p=1.0),
                A.VerticalFlip(p=1.0),
                A.HorizontalFlip(p=1.0),
                A.RandomRotate90(p=1.0),
                A.NoOp(),
            ],
            p=1.0,
        ),
        A.OneOf(
            [
                A.ElasticTransform(p=1.0),
                A.GridDistortion(p=1.0),
                A.OpticalDistortion(p=1.0),
                A.NoOp(),
            ],
            p=1.0,
        ),
        A.OneOf(
            [
                A.GaussNoise(p=1.0),
                A.GaussianBlur(p=1.0),
                A.ISONoise(p=1.0),
                A.CoarseDropout(
                    p=1.0, max_holes=16, max_height=16, max_width=16),
                A.NoOp(),
            ],
            p=1.0,
        ),
    ])

    return transforms
Example #6
0
def get_training_augmentation():
    train_transform = [
        A.RandomSizedCrop(min_max_height=(300, 360), height=320, width=320,
                          always_apply=True),
        A.HorizontalFlip(p=0.5),
        A.OneOf([
            A.CLAHE(),
            A.RandomBrightnessContrast(),
            A.RandomGamma(),
            A.HueSaturationValue(),
            A.NoOp()
        ]),
        A.OneOf([
            A.IAAAdditiveGaussianNoise(p=0.2),
            A.IAASharpen(),
            A.Blur(blur_limit=3),
            A.MotionBlur(blur_limit=3),
            A.NoOp()
        ]),
        A.OneOf([
            A.RandomFog(),
            A.RandomSunFlare(),
            A.RandomRain(),
            A.RandomSnow(),
            A.NoOp()
        ]),
        A.Normalize(),
    ]
    return A.Compose(train_transform)
Example #7
0
def get_medium_augmentations(image_size):
    min_size = min(image_size[0], image_size[1])

    return A.Compose([
        A.OneOf([A.RandomSizedCrop(min_max_height=(int(min_size* 0.85), min_size),
                          height=image_size[0],
                          width=image_size[1]),
                A.Resize(image_size[0], image_size[1]),
                A.CenterCrop(image_size[0], image_size[1])
                ], p = 1.0),

        A.OneOf([
            A.RandomBrightnessContrast(brightness_limit=0.15,
                                       contrast_limit=0.5),
            A.RandomGamma(gamma_limit=(50, 150)),
            A.NoOp()
        ], p = 1.0),
        
        A.OneOf([A.CLAHE(p=0.5, clip_limit=(10, 10), tile_grid_size=(3, 3)),
                A.FancyPCA(alpha=0.4),
                A.NoOp(),
                ], p = 1.0),
        
        A.OneOf([A.HorizontalFlip(),
                A.VerticalFlip(),
                A.RandomRotate90(),
                A.NoOp()
                ], p = 1.0)
    ])
def get_hard_augmentations(image_size):
    return A.Compose([
        A.OneOf([
            A.ShiftScaleRotate(shift_limit=0.05, scale_limit=0.1,
                               rotate_limit=45,
                               border_mode=cv2.BORDER_CONSTANT, value=0),
            A.ElasticTransform(alpha_affine=0,
                               alpha=35,
                               sigma=5,
                               border_mode=cv2.BORDER_CONSTANT,
                               value=0),
            A.OpticalDistortion(distort_limit=0.11, shift_limit=0.15,
                                border_mode=cv2.BORDER_CONSTANT,
                                value=0),
            A.GridDistortion(border_mode=cv2.BORDER_CONSTANT,
                             value=0),
            A.NoOp()
        ]),

        A.OneOf([

            A.RandomSizedCrop(min_max_height=(int(image_size[0] * 0.75), image_size[0]),
                              height=image_size[0],
                              width=image_size[1], p=0.3),
            A.NoOp()
        ]),

        A.ISONoise(p=0.5),

        # Brightness/contrast augmentations
        A.OneOf([
            A.RandomBrightnessContrast(brightness_limit=0.5,
                                       contrast_limit=0.4),
            IndependentRandomBrightnessContrast(brightness_limit=0.25,
                                                contrast_limit=0.24),
            A.RandomGamma(gamma_limit=(50, 150)),
            A.NoOp()
        ]),

        A.OneOf([
            A.RGBShift(r_shift_limit=40, b_shift_limit=30, g_shift_limit=30),
            A.HueSaturationValue(hue_shift_limit=10,
                                 sat_shift_limit=10),
            A.ToGray(p=0.2),
            A.NoOp()
        ]),

        A.ChannelDropout(),
        A.RandomGridShuffle(p=0.3),

        # D4
        A.Compose([
            A.RandomRotate90(),
            A.Transpose()
        ])
    ])
def get_augumentation(phase,
                      width=512,
                      height=512,
                      min_area=0.,
                      min_visibility=0.):
    list_transforms = []
    if phase == 'train':
        list_transforms.extend([
            albu.augmentations.transforms.LongestMaxSize(max_size=width,
                                                         always_apply=True),
            albu.PadIfNeeded(min_height=height,
                             min_width=width,
                             always_apply=True,
                             border_mode=0,
                             value=[0, 0, 0]),
            albu.augmentations.transforms.RandomResizedCrop(height=height,
                                                            width=width,
                                                            p=0.3),
            albu.augmentations.transforms.Flip(),
            albu.augmentations.transforms.Transpose(),
            albu.OneOf([
                albu.RandomBrightnessContrast(brightness_limit=0.5,
                                              contrast_limit=0.4),
                albu.RandomGamma(gamma_limit=(50, 150)),
                albu.NoOp()
            ]),
            albu.OneOf([
                albu.RGBShift(r_shift_limit=20,
                              b_shift_limit=15,
                              g_shift_limit=15),
                albu.HueSaturationValue(hue_shift_limit=5, sat_shift_limit=5),
                albu.NoOp()
            ]),
            albu.CLAHE(p=0.8),
            albu.HorizontalFlip(p=0.5),
            albu.VerticalFlip(p=0.5),
        ])
    if (phase == 'test' or phase == 'valid'):
        list_transforms.extend([albu.Resize(height=height, width=width)])
    list_transforms.extend([
        albu.Normalize(mean=(0.485, 0.456, 0.406),
                       std=(0.229, 0.224, 0.225),
                       p=1),
        ToTensor()
    ])
    if (phase == 'test'):
        return albu.Compose(list_transforms)
    return albu.Compose(list_transforms,
                        bbox_params=albu.BboxParams(
                            format='pascal_voc',
                            min_area=min_area,
                            min_visibility=min_visibility,
                            label_fields=['category_id']))
def hard_color_augmentations():
    return A.Compose([
        A.RandomBrightnessContrast(brightness_limit=0.3,
                                   contrast_limit=0.3,
                                   brightness_by_max=True),
        A.RandomGamma(gamma_limit=(90, 110)),
        A.OneOf(
            [A.NoOp(),
             A.MultiplicativeNoise(),
             A.GaussNoise(),
             A.ISONoise()]),
        A.OneOf([A.RGBShift(), A.HueSaturationValue(),
                 A.NoOp()]),
        A.RandomFog(fog_coef_lower=0.05, fog_coef_upper=0.3),
    ])
Example #11
0
def test_compose_with_keypoint_noop(keypoints, keypoint_format, labels):
    image = np.ones((100, 100, 3))
    if labels is not None:
        aug = A.Compose([A.NoOp(p=1.0)],
                        keypoint_params={
                            "format": keypoint_format,
                            "label_fields": ["labels"]
                        })
        transformed = aug(image=image, keypoints=keypoints, labels=labels)
    else:
        aug = A.Compose([A.NoOp(p=1.0)],
                        keypoint_params={"format": keypoint_format})
        transformed = aug(image=image, keypoints=keypoints)
    assert np.array_equal(transformed["image"], image)
    assert transformed["keypoints"] == keypoints
Example #12
0
    def __init__(self,
                 scale_range: float = (0.35, 0.65),
                 input_size: int = (416, 416),
                 augmentation: bool = False) -> None:

        if augmentation:
            self.crop_func = RandomCropAndResize(scale_range, input_size)
            self.aug_func = alb.Compose([
                alb.OneOf([
                    alb.RGBShift(),
                    alb.ToGray(),
                    alb.NoOp(),
                ]),
                alb.RandomBrightnessContrast(),
                alb.OneOf([
                    alb.GaussNoise(),
                    alb.IAAAdditiveGaussianNoise(),
                    alb.CoarseDropout(fill_value=100),
                ])
            ])
        else:
            scale = (scale_range[0] + scale_range[1]) / 2.
            self.crop_func = CenterCropAndResize(scale, input_size)
            self.aug_func = None

        self.heatmap_stride = 4
        self.heatmap_size = (input_size[0] // self.heatmap_stride,
                             input_size[1] // self.heatmap_stride)
Example #13
0
    def sequence_augmentation(self,
                              p_apply=0.5,
                              limit_rotation=40,
                              limit_translation=0.1,
                              limit_scale=(-0.2, 0.2)):
        if self.rand_choice == 1:
            augm = A.Lambda(image=self.aug_dilate, keypoint=self.aug_keypoints)
        elif self.rand_choice == 2:
            augm = A.Lambda(image=self.aug_erode, keypoint=self.aug_keypoints)
        else:
            augm = A.NoOp()
        transform = A.Compose([
            A.Lambda(image=self.aug_morph_close,
                     keypoint=self.aug_keypoints,
                     p=1.0), augm,
            A.Downscale(scale_min=0.5,
                        scale_max=0.9,
                        p=p_apply,
                        interpolation=cv2.INTER_NEAREST_EXACT),
            A.ShiftScaleRotate(limit_translation,
                               limit_scale,
                               limit_rotation,
                               p=p_apply,
                               border_mode=cv2.BORDER_REFLECT101,
                               value=-1.0)
        ],
                              additional_targets={
                                  'image1': 'image',
                                  'image2': 'image'
                              },
                              keypoint_params=A.KeypointParams(
                                  "xy", remove_invisible=False))

        return transform
Example #14
0
def augmentation(p_apply=0.5,
                 limit_rotation=40,
                 limit_translation=0.1,
                 limit_scale=(-0.2, 0.2)):
    transform = A.Compose(
        [
            A.Lambda(image=aug_morph_close, keypoint=aug_keypoints, p=1.0),
            A.OneOf([
                A.Lambda(image=aug_dilate, keypoint=aug_keypoints),
                A.Lambda(image=aug_erode, keypoint=aug_keypoints),
                A.NoOp()
            ],
                    p=p_apply),
            # A.Lambda(image=aug_erode_or_dilate, keypoint=aug_keypoints, p=p_apply),
            A.Downscale(scale_min=0.5,
                        scale_max=0.9,
                        p=p_apply,
                        interpolation=cv2.INTER_NEAREST_EXACT),
            A.ShiftScaleRotate(limit_translation,
                               limit_scale,
                               limit_rotation,
                               p=p_apply,
                               border_mode=cv2.BORDER_REFLECT101,
                               value=-1.0),
            A.Lambda(image=cropout, keypoint=aug_keypoints, p=p_apply),
        ],
        keypoint_params=A.KeypointParams("xy", remove_invisible=False))

    return transform
Example #15
0
def get_aug_from_config(config):
    config = copy.deepcopy(config)

    if config is None:
        return A.NoOp()

    if isinstance(config, str):
        return name2factory(config)()

    if isinstance(config, list):
        return A.Compose([get_aug_from_config(c) for c in config])

    # Augmentation name
    name = list(config.keys())[0]
    config = config[name] if config[name] else {}

    # Args for Compose/OneOf
    args = config.pop("args", None)
    args = args if args is not None else []

    if name == "Compose":
        return A.Compose([get_aug_from_config(c) for c in args], **config)
    elif name == "OneOf":
        return A.OneOf([get_aug_from_config(c) for c in args], **config)
    else:
        return name2factory(name)(*args, **config)
Example #16
0
def get_augumentation(phase,
                      width=512,
                      height=512,
                      min_area=0.,
                      min_visibility=0.):
    list_transforms = []
    if phase == 'train':
        list_transforms.extend([
            albu.OneOf([
                albu.ShiftScaleRotate(shift_limit=0.05,
                                      scale_limit=0.1,
                                      rotate_limit=15,
                                      border_mode=cv2.BORDER_CONSTANT,
                                      value=0),
                albu.NoOp()
            ]),
            albu.augmentations.transforms.RandomResizedCrop(height=height,
                                                            width=width,
                                                            p=1.0),
            albu.OneOf([
                albu.RandomBrightnessContrast(brightness_limit=0.5,
                                              contrast_limit=0.4),
                albu.RandomGamma(gamma_limit=(50, 150)),
                albu.NoOp()
            ]),
            albu.OneOf([
                albu.RGBShift(r_shift_limit=20,
                              b_shift_limit=15,
                              g_shift_limit=15),
                albu.HueSaturationValue(hue_shift_limit=5, sat_shift_limit=5),
                albu.NoOp()
            ]),
            albu.OneOf([albu.CLAHE(), albu.NoOp()]),
            albu.HorizontalFlip(p=0.5),
            albu.VerticalFlip(p=0.5)
        ])
    if (phase == 'test'):
        list_transforms.extend([albu.Resize(height=height, width=width)])
    list_transforms.extend([ToTensor()])
    if (phase == 'test'):
        return albu.Compose(list_transforms)
    return albu.Compose(list_transforms,
                        bbox_params=albu.BboxParams(
                            format='pascal_voc',
                            min_area=min_area,
                            min_visibility=min_visibility,
                            label_fields=['category_id']))
Example #17
0
def get_transforms(config,
                   key='transforms',
                   imagenet=False,
                   norm=True,
                   to_tensor=True):
    if norm:
        normalize = A.Normalize(
            [0.485, 0.456, 0.406],
            [0.229, 0.224, 0.225]) if imagenet else A.Normalize(0, 1)
    else:
        normalize = A.NoOp()
    return A.Compose([
        A.Resize(config['data']['height'], config['data']['width']), normalize,
        A.NoOp() if config['data'][key] == 'default' else get_aug_from_config(
            config['data'][key]),
        ToTensorV2() if to_tensor else A.NoOp()
    ])
Example #18
0
def medium_training_transforms():
    return A.Compose([
        A.OneOf([
            A.Transpose(),
            A.VerticalFlip(),
            A.HorizontalFlip(),
            A.RandomRotate90(),
            A.NoOp()
        ],
                p=1.0),
        A.OneOf([
            A.CoarseDropout(max_holes=16, max_height=16, max_width=16),
            A.NoOp()
        ],
                p=1.0),
        A.Normalize()
    ])
Example #19
0
 def __init__(self, df, aug=A.NoOp(), fold=1):
     """
     df.iloc[:, 0]: (C, H, W) float32
     df.iloc[:, 1]: (H, W)    float32
     """
     self.df = pd.DataFrame(dict(image=df.iloc[:, 0], mask=df.iloc[:, 1]))
     self.aug = A.Compose([aug, ToTensorV2()])
     self.fold = fold
Example #20
0
def medium_training_transforms_xray(crop_size=256):
    return A.Compose([
        A.RandomResizedCrop(height=crop_size, width=crop_size),
        A.OneOf([
            A.Transpose(),
            A.VerticalFlip(),
            A.HorizontalFlip(),
            A.RandomRotate90(),
            A.NoOp()
        ],
                p=1.0),
        A.OneOf([
            A.CoarseDropout(max_holes=16, max_height=16, max_width=16),
            A.NoOp()
        ],
                p=1.0),
    ])
Example #21
0
    def __init__(self,
                 root,
                 mode='train',
                 mask_file='mask.tif',
                 scales=(1.0, )):
        self.scales = scales

        super().__init__(root, mode, mask_file, transform=alb.NoOp())
        self.scales = scales
Example #22
0
 def __init__(self, df, aug=A.NoOp(), fold=1):
     """
     df.iloc[:, 0]: (C, H, W) float32
     df.iloc[:, 1]: (C, H, W) float32
     """
     self.df = pd.DataFrame(dict(image=df.iloc[:, 0], target=df.iloc[:, 1]))
     self.aug = A.Compose([aug, ToTensorV2()],
                          additional_targets=dict(target="image"))
     self.fold = fold
def medium_spatial_augmentations(image_size: Tuple[int, int],
                                 no_mask_dropout=False):
    return A.Compose([
        A.OneOf([
            A.NoOp(p=0.8),
            A.RandomGridShuffle(grid=(4, 4), p=0.2),
            A.RandomGridShuffle(grid=(3, 3), p=0.2),
            A.RandomGridShuffle(grid=(2, 2), p=0.2),
        ],
                p=1),
        A.ShiftScaleRotate(scale_limit=0.1,
                           rotate_limit=10,
                           border_mode=cv2.BORDER_CONSTANT),
        # D4 Augmentations
        A.Compose([A.Transpose(), A.RandomRotate90()]),
        # Spatial-preserving augmentations:
        A.RandomBrightnessContrast(),
        A.NoOp() if no_mask_dropout else A.MaskDropout(max_objects=10),
    ])
Example #24
0
def test_compose_with_keypoint_noop_error_label_fields(keypoints,
                                                       keypoint_format):
    image = np.ones((100, 100, 3))
    aug = A.Compose([A.NoOp(p=1.0)],
                    keypoint_params={
                        "format": keypoint_format,
                        "label_fields": "class_id"
                    })
    with pytest.raises(Exception):
        aug(image=image, keypoints=keypoints, cls_id=[0])
Example #25
0
def get_tta_transforms(config):
    return A.Compose(
        [
            A.NoOp(),
            A.NoOp(),
            A.Rotate(limit=80, p=1.0),
            A.OneOf([A.NoOp(), A.NoOp(), A.NoOp()]),
            # A.RandomSizedCrop(min_max_height=(int(resolution*0.7), input_res),
            #                   height=resolution, width=resolution, p=1.0),
            A.NoOp(),
            A.NoOp(),
            A.GaussianBlur(p=0.3) if config.gaussian_blur else A.NoOp(),
            A.OneOf([A.NoOp(),
                     A.HueSaturationValue(hue_shift_limit=0)]),
            A.NoOp(),
            A.Normalize(),
            ToTensorV2(),
        ],
        p=1.0,
    )
def hard_augmentations():
    return A.Compose([
        A.RandomRotate90(),
        A.Transpose(),
        A.RandomGridShuffle(),
        A.ShiftScaleRotate(scale_limit=0.1,
                           rotate_limit=45,
                           border_mode=cv2.BORDER_CONSTANT,
                           mask_value=0,
                           value=0),
        A.ElasticTransform(border_mode=cv2.BORDER_CONSTANT,
                           alpha_affine=5,
                           mask_value=0,
                           value=0),
        # Add occasion blur
        A.OneOf([
            A.GaussianBlur(),
            A.GaussNoise(),
            A.IAAAdditiveGaussianNoise(),
            A.NoOp()
        ]),
        # D4 Augmentations
        A.OneOf([A.CoarseDropout(),
                 A.MaskDropout(max_objects=10),
                 A.NoOp()]),
        # Spatial-preserving augmentations:
        A.OneOf([
            A.RandomBrightnessContrast(brightness_by_max=True),
            A.CLAHE(),
            A.HueSaturationValue(),
            A.RGBShift(),
            A.RandomGamma(),
            A.NoOp(),
        ]),
        # Weather effects
        A.OneOf([
            A.RandomFog(fog_coef_lower=0.01, fog_coef_upper=0.3, p=0.1),
            A.NoOp()
        ]),
        A.Normalize(),
    ])
Example #27
0
def train_transform(width=512, height=512, min_area=0.0, min_visibility=0.0, lamda_norm=False):
        list_transforms = []
        augment = albu.Compose([
            albu.OneOf(
                [
                    albu.RandomSizedBBoxSafeCrop(p=1.0, height=height, width=width),
                    albu.HorizontalFlip(p=1.0),
                    albu.VerticalFlip(p=1.0),
                    albu.RandomRotate90(p=1.0),
                    albu.NoOp(p=1.0)
                ]
            ),
            albu.OneOf(
                [
                    albu.RandomBrightnessContrast(p=1.0),
                    albu.RandomGamma(p=1.0),
                    albu.NoOp(p=1.0)
                ]
            ),
            albu.OneOf(
                [
                    albu.MotionBlur(p=1.0),
                    albu.RandomFog(p=1.0),
                    albu.RandomRain(p=1.0),
                    albu.CLAHE(p=1.0),
                    albu.ToGray(p=1.0),
                    albu.NoOp(p=1.0)
                ]
            )
        ])
        list_transforms.extend([augment])

        if lamda_norm:
            list_transforms.extend([albu.Lambda(image=lamda_norm_tran)])
        else:
            list_transforms.extend([albu.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), max_pixel_value=255., p=1.0)])
        list_transforms.extend([albu.Resize(height=height, width=width, p=1.0)])

        return albu.Compose(list_transforms, bbox_params=albu.BboxParams(format='pascal_voc', min_area=min_area,
                                                                         min_visibility=min_visibility,
                                                                         label_fields=['label']))
Example #28
0
 def create_transform(self, input_dtype):
     weights = self.weights.detach().cpu().numpy().tolist()
     probabilities = [op.probability.item() for op in self.operations]
     true_probabilities = [w * p for (w, p) in zip(weights, probabilities)]
     assert sum(true_probabilities) <= 1.0
     transforms = []
     p_sum = 0
     for operation, p in zip(self.operations, true_probabilities):
         transforms.append(operation.create_transform(input_dtype, p))
         p_sum += p
     transforms.append(A.NoOp(p=1.0 - p_sum))
     return OneOf(transforms, p=1)
Example #29
0
def light_training_transforms():
    return A.Compose([
        A.OneOf([
            A.Transpose(),
            A.VerticalFlip(),
            A.HorizontalFlip(),
            A.RandomRotate90(),
            A.NoOp()
        ],
                p=1.0),
        A.Normalize()
    ])
Example #30
0
def light_training_transforms_xray(crop_size=256):
    return A.Compose([
        A.RandomResizedCrop(height=crop_size, width=crop_size),
        A.OneOf([
            A.Transpose(),
            A.VerticalFlip(),
            A.HorizontalFlip(),
            A.RandomRotate90(),
            A.NoOp()
        ],
                p=1.0),
    ])