def recall(self, image, mask): if self.p <= self.probability: image = ReplayCompose.replay(self.replay, image=image)["image"] if self.apply_to_mask: mask = ReplayCompose.replay(self.replay, image=mask)["image"] return image, mask
class ImageOnlyAlbumentation(NumpyOp): """Operators which apply to single images (as opposed to images + masks or images + bounding boxes). This is a wrapper for functionality provided by the Albumentations library: https://github.com/albumentations-team/albumentations. A useful visualization tool for many of the possible effects it provides is available at https://albumentations-demo.herokuapp.com. Args: func: An Albumentation function to be invoked. inputs: Key(s) from which to retrieve data from the data dictionary. If more than one key is provided, the `func` will be run in replay mode so that the exact same augmentation is applied to each value. outputs: Key(s) under which to write the outputs of this Op back to the data dictionary. mode: What mode(s) to execute this Op in. For example, "train", "eval", "test", or "infer". To execute regardless of mode, pass None. To execute in all modes except for a particular one, you can pass an argument like "!infer" or "!train". ds_id: What dataset id(s) to execute this Op in. To execute regardless of ds_id, pass None. To execute in all ds_ids except for a particular one, you can pass an argument like "!ds1". """ def __init__(self, func: ImageOnlyTransform, inputs: Union[str, List[str]], outputs: Union[str, List[str]], mode: Union[None, str, Iterable[str]] = None, ds_id: Union[None, str, Iterable[str]] = None): super().__init__(inputs=inputs, outputs=outputs, mode=mode, ds_id=ds_id) assert len(self.inputs) == len( self.outputs), "Input and Output lengths must match" self.func = Compose(transforms=[func]) self.replay_func = ReplayCompose(transforms=[deepcopy(func)]) self.in_list, self.out_list = True, True def forward(self, data: List[np.ndarray], state: Dict[str, Any]) -> List[np.ndarray]: results = [ self.replay_func(image=data[0]) if len(data) > 1 else self.func( image=data[0]) ] for i in range(1, len(data)): results.append( self.replay_func.replay(results[0]['replay'], image=data[i])) return [result["image"] for result in results]
class Transformation(object): def __init__(self, transformation, probability, apply_to_mask=False): self.transformation = transformation self.transformation.p = 1 self.transformation = ReplayCompose([self.transformation]) self.probability = probability self.p = None self.apply_to_mask = apply_to_mask def __call__(self, image, mask): self.p = random() return self._call(image, mask) def _call(self, image, mask): if self.p <= self.probability: data = self.transformation(image=image, force_apply=True) image = data["image"] self.replay = data["replay"] if self.apply_to_mask: mask = self.transformation.replay(self.replay, image=mask)["image"] mask[mask > 1] = 255 mask[mask <= 1] = 0 return image, mask def recall(self, image, mask): if self.p <= self.probability: image = ReplayCompose.replay(self.replay, image=image)["image"] if self.apply_to_mask: mask = ReplayCompose.replay(self.replay, image=mask)["image"] return image, mask