def question5(filename): data = 'unifiedCancerData_111.csv' dist = distortion( visualize(data, filename, lambda x: hierarchical_clustering(x, 9)), load_data_table(data)) print('Distortion in question5, hierarchical_clustering = %f (%s)' % (dist, dist))
def question6(filename): data = 'unifiedCancerData_111.csv' dist = distortion( visualize(data, filename, lambda x: kmeans_clustering(x, 9, 5)), load_data_table(data)) print('Distortion in question6, kmeans = %f (%s)' % (dist, dist))
def question3(filename): visualize('unifiedCancerData_3108.csv', filename, lambda x: kmeans_clustering(x, 15, 5))
def question2(filename): visualize('unifiedCancerData_3108.csv', filename, lambda x: hierarchical_clustering(x, 15))
def question6(filename): data = 'data/unifiedCancerData_111.csv' dist = distortion(visualize(data, filename, lambda x: kmeans_clustering(x, 9, 5)), load_data_table(data)) print('Distortion in question6, kmeans = %f (%s)' % (dist, dist))
def question5(filename): data = 'data/unifiedCancerData_111.csv' dist = distortion(visualize(data, filename, lambda x: hierarchical_clustering(x, 9)), load_data_table(data)) print('Distortion in question5, hierarchical_clustering = %f (%s)' % (dist, dist))
def question3(filename): visualize('data/unifiedCancerData_3108.csv', filename, lambda x: kmeans_clustering(x, 15, 5))
def question2(filename): visualize('data/unifiedCancerData_3108.csv', filename, lambda x: hierarchical_clustering(x, 15))