def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) logging.basicConfig(level=logging.INFO, filename=r"C:\Users\Michał\PycharmProjects\mgr\sgcs\log.log", format='%(asctime)s %(message)s') self.algorithm_variant = CykServiceVariationManager(is_stochastic=False) self.configuration = self.algorithm_variant.create_default_configuration() self.randomizer = Randomizer(Random()) self.sut = GcsSimulator(self.randomizer, self.algorithm_variant) self.set_parameters()
class LongTestGcsSimulator(unittest.TestCase): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) logging.basicConfig(level=logging.INFO, filename=r"C:\Users\Michał\PycharmProjects\mgr\sgcs\log.log", format='%(asctime)s %(message)s') self.algorithm_variant = CykServiceVariationManager(is_stochastic=False) self.configuration = self.algorithm_variant.create_default_configuration() self.randomizer = Randomizer(Random()) self.sut = GcsSimulator(self.randomizer, self.algorithm_variant) self.set_parameters() def mk_path(self, relative): return os.path.join(r"C:\Users\Michał\PycharmProjects\mgr\sgcs\sgcs\data\example gramatics", relative) def set_parameters(self): self.configuration.should_run_evolution = True self.configuration.evolution.selectors = [ EvolutionRouletteSelectorConfiguration.create(), EvolutionRouletteSelectorConfiguration.create() ] self.configuration.induction.grammar_correction.should_run = False self.configuration.induction.coverage.operators.terminal.chance = 1 self.configuration.induction.coverage.operators.universal.chance = 0 self.configuration.induction.coverage.operators.starting.chance = 1 self.configuration.induction.coverage.operators.starting.adding_hint = \ AddingRuleStrategyHint.expand_population self.configuration.induction.coverage.operators.full.chance = 1 self.configuration.induction.coverage.operators.full.adding_hint = \ AddingRuleStrategyHint.expand_population self.configuration.max_algorithm_steps = 5000 self.configuration.rule.max_non_terminal_symbols = 19 self.configuration.rule.random_starting_population_size = 30 self.configuration.max_execution_time = 8000 self.configuration.satisfying_fitness = 1 self.configuration.evolution.operators.crossover.chance = 0.2 self.configuration.evolution.operators.mutation.chance = 0.8 self.configuration.evolution.operators.inversion.chance = 0.8 self.configuration.induction.coverage.operators.aggressive.chance = 0 self.configuration.induction.coverage.operators.aggressive.adding_hint = \ AddingRuleStrategyHint.expand_population self.configuration.rule.adding.crowding.factor = 18 self.configuration.rule.adding.crowding.size = 3 self.configuration.rule.adding.elitism.is_used = True self.configuration.rule.adding.elitism.size = 3 self.configuration.rule.adding.max_non_terminal_rules = 40 self.configuration.statistics.positive_weight = 1 self.configuration.statistics.negative_weight = 2 self.configuration.statistics.classical_fitness_weight = 1 self.configuration.statistics.fertility_weight = 0 self.configuration.statistics.base_fitness = 0.5 self.configuration.max_algorithm_runs = 50 def generic_simulation(self, learning_path, testing_path, name): logging.info('starting %s', name) with open(os.path.join(r'C:\Users\Michał\PycharmProjects\mgr\runs\auto', name + '.txt'), 'w+') as file: learning_set = SymbolTranslator.create(learning_path) learning_set.negative_allowed = not self.algorithm_variant.is_stochastic testing_set = SymbolTranslator.create(testing_path) testing_set.negative_allowed = True result, ngen, grammar_estimator, population, *_ = self.sut.perform_simulation( learning_set, testing_set, self.configuration) print(result) print('NGen:', ngen) file.write(str(result)) file.write(str(ngen)) def test_simulation_dummy_test(self): learning_set = self.mk_path('tomita 1.txt') testing_set = self.mk_path('tomita 1.txt') self.generic_simulation(learning_set, testing_set, 'tomita 1') def test_simulation_for_tomita_l1(self): learning_set = self.mk_path('tomita 1.txt') testing_set = self.mk_path('t1 opt 15 max') self.generic_simulation(learning_set, testing_set, 'tomita 1') def test_simulation_for_tomita_l2(self): learning_set = self.mk_path('tomita 2.txt') testing_set = self.mk_path('t2 opt 15 max') self.generic_simulation(learning_set, testing_set, 'tomita 2') def test_simulation_for_tomita_l3(self): learning_set = self.mk_path('tomita 3.txt') testing_set = self.mk_path('t3 opt 15 max') self.generic_simulation(learning_set, testing_set, 'tomita 3') def test_simulation_for_tomita_l4(self): learning_set = self.mk_path('tomita 4.txt') testing_set = self.mk_path('t4 opt 15 max') self.generic_simulation(learning_set, testing_set, 'tomita 4') def test_simulation_for_tomita_l5(self): learning_set = self.mk_path('tomita 5.txt') testing_set = self.mk_path('t5 opt 15 max') self.generic_simulation(learning_set, testing_set, 'tomita 5') def test_simulation_for_tomita_l6(self): learning_set = self.mk_path('tomita 6.txt') testing_set = self.mk_path('t6 opt 15 max') self.generic_simulation(learning_set, testing_set, 'tomita 6') def test_simulation_for_tomita_l7(self): learning_set = self.mk_path('tomita 7.txt') testing_set = self.mk_path('t7 opt 15 max') self.generic_simulation(learning_set, testing_set, 'tomita 7') def test_simulation_for_tomita_l5_l7(self): print('tomita l5') learning_set = self.mk_path('tomita 5.txt') testing_set = self.mk_path('t5 opt 15 max') self.generic_simulation(learning_set, testing_set, 'tomita 5') print('tomita l6') learning_set = self.mk_path('tomita 6.txt') testing_set = self.mk_path('t6 opt 15 max') self.generic_simulation(learning_set, testing_set, 'tomita 6') print('tomita l7') learning_set = self.mk_path('tomita 7.txt') testing_set = self.mk_path('t7 opt 15 max') self.generic_simulation(learning_set, testing_set, 'tomita 7') def test_simulation_for_tomita_l1_l7(self): self.generic_simulation(self.mk_path('tomita 1.txt'), self.mk_path('t1 opt 15 max'), 'tomita 1') self.generic_simulation(self.mk_path('tomita 2.txt'), self.mk_path('t2 opt 15 max'), 'tomita 2') self.generic_simulation(self.mk_path('tomita 3.txt'), self.mk_path('t3 opt 15 max'), 'tomita 3') self.generic_simulation(self.mk_path('tomita 4.txt'), self.mk_path('t4 opt 15 max'), 'tomita 4') self.generic_simulation(self.mk_path('tomita 5.txt'), self.mk_path('t5 opt 15 max'), 'tomita 5') self.generic_simulation(self.mk_path('tomita 6.txt'), self.mk_path('t6 opt 15 max'), 'tomita 6') self.generic_simulation(self.mk_path('tomita 7.txt'), self.mk_path('t7 opt 15 max'), 'tomita 7') def test_simulation_for_other_gramatics(self): self.configuration.max_algorithm_steps = 1000 self.configuration.max_algorithm_runs = 10 self.generic_simulation(self.mk_path('ab los 200 30'), self.mk_path('ab opt max 15'), 'ab') self.generic_simulation(self.mk_path('anbn los 200 15'), self.mk_path('anbn opt 15 max'), 'anbn') self.generic_simulation(self.mk_path('bra1 los2 200 30'), self.mk_path('bra1 opt 15 max'), 'bra1') self.generic_simulation(self.mk_path('bra3 los 200 30'), self.mk_path('bra3 opt los 65534'), 'bra3') self.generic_simulation(self.mk_path('toy los2 200 30'), self.mk_path('toy opt los 65534'), 'toy') self.generic_simulation(self.mk_path('pal2 parz los 200'), self.mk_path('pal2 opt parzysty max 15'), 'pal2')