Example #1
0
def smartPlays(game, tiles, player):
    player /= 2
    curr_game = game[player]
    other_game = game[1 - player]
    actions = curr_game.possible_actions(0)
    if len(actions) == 1:
        curr_game.update(actions[0][0])
        other_game.update(actions[0][0])
        print "I played a " + str(actions[0][0]) + ", yay!"
        if not actions[0][0] == PASS_DOMINO:
            tiles[2 * player].remove(actions[0][0])
    else:
        pnm = ProbabilisticNegaMax(curr_game)
        depth = int(5 * (2**(1. / 3 * int(len(curr_game.dominos_played) / 4))))
        print "DEPTH"
        print depth
        max_move, max_score = pnm.p_negamax_ab(depth, depth, -float("inf"),
                                               float("inf"), 0)
        # max_move, max_score = pnm.p_negamax(6,0)
        curr_game.update(max_move[0], placement=max_move[1])
        other_game.update(max_move[0], placement=max_move[1])
        print "I played a " + str(max_move[0]) + ", yay!"
        if not max_move[0] == PASS_DOMINO:
            tiles[2 * player].remove(max_move[0])
    return tiles
Example #2
0
def smartPlays(game):
    actions = game.possible_actions(0)
    if len(actions) == 1:
        game.update(actions[0][0])
        print "I played a " + str(actions[0][0]) + ", yay!"
    else:
        pnm = ProbabilisticNegaMax(game)
        max_move, max_score = pnm.p_negamax(5, 0)
        game.update(max_move[0], placement=max_move[1])
        print "I played a " + str(max_move[0]) + ", yay!"
Example #3
0
def smartPlays(game, player):
    player /= 2
    curr_game = game[player]
    other_game = game[1-player]
    actions = curr_game.possible_actions(0)
    if len(actions) == 1:
        curr_game.update(actions[0][0])
        other_game.update(actions[0][0])
        print "I played a " + str(actions[0][0]) + ", yay!"
    else:
        pnm = ProbabilisticNegaMax(curr_game)
        depth = int(6*(2**(1./3*int(len(curr_game.dominos_played)/4))))
        print "DEPTH"
        print depth
        max_move, max_expectation = None, None
        for a in actions:
            curr_expectation = calculate_expectation(curr_game, depth, a)
            if max_move is None or max_expectation < curr_expectation:
                max_move, max_expectation = a, curr_expectation
                print 'new max found with expectation : {}'.format(max_expectation)

        # max_move, max_score = pnm.p_negamax(6,0)
        curr_game.update(max_move[0], placement=max_move[1])
        other_game.update(max_move[0], placement=max_move[1])
        print "I played a " + str(max_move[0]) + ", yay!"
Example #4
0
def smartPlays(game, tiles):
    actions = game.possible_actions(1)
    if len(actions) == 1:
        game.update(actions[0][0])
        # print "I played a " + str(actions[1][0]) + ", yay!"
    else:
        pnm = ProbabilisticNegaMax(game)
        depth = int(5 * (2**(1. / 3 * int(len(game.dominos_played) / 4))))
        print "DEPTH"
        print depth
        max_move, max_score = pnm.p_negamax_ab(depth, depth, -float("inf"),
                                               float("inf"), 1)
        # max_move, max_score = pnm.p_negamax(7,0)
        game.update(max_move[1], placement=max_move[1])
        # print "I played a " + str(max_move[1]) + ", yay!"
    return tiles
Example #5
0
def smartPlays(game, tiles, player):
    player /= 2
    curr_game = game[player]
    other_game = game[1 - player]
    actions = curr_game.possible_actions(0)
    if len(actions) == 1:
        curr_game.update(actions[0][0])
        other_game.update(actions[0][0])
        print "I played a " + str(actions[0][0]) + ", yay!"
        if not actions[0][0] == PASS_DOMINO:
            tiles[2 * player].remove(actions[0][0])
    else:
        pnm = ProbabilisticNegaMax(curr_game)
        depth = int(5 * (2**(1. / 3 * int(len(curr_game.dominos_played) / 4))))
        print "DEPTH"
        print depth
        # uncomment out the line below for oldSmartPlayer:
        # max_move, max_score = pnm.p_negamax_ab(depth, depth, -float("inf"), float("inf"), 0)
        # comment out up to after for loop for newSmartPlayer
        max_move, max_expectation = None, None
        for a in actions:
            curr_expectation = calculate_expectation(curr_game, depth, a)
            if max_move is None or max_expectation < curr_expectation:
                max_move, max_expectation = a, curr_expectation
                print 'new max found with expectation : {}'.format(
                    max_expectation)

        # max_move, max_score = pnm.p_negamax(6,0)
        curr_game.update(max_move[0], placement=max_move[1])
        other_game.update(max_move[0], placement=max_move[1])
        print "I played a " + str(max_move[0]) + ", yay!"
        if not max_move[0] == PASS_DOMINO:
            tiles[2 * player].remove(max_move[0])
    return tiles
Example #6
0
def newSmartPlays(game, tiles, player):
    curr_game = game[player]
    actions = curr_game.possible_actions(0)
    if len(actions) == 1:
        for g in games:
            g.update(actions[0][0])
        print "I played a " + str(actions[0][0]) + ", yay!"
        if not actions[0][0] == PASS_DOMINO:
            tiles[player].remove(actions[0][0])
    else:
        pnm = ProbabilisticNegaMax(curr_game)
        depth = int(5*(2**(1./3*int(len(curr_game.dominos_played)/4))))
        print "DEPTH"
        print depth
        max_move, max_expectation = None, None
        for a in actions:
            curr_expectation = calculate_expectation(curr_game, depth, a)
            if max_move is None or max_expectation < curr_expectation:
                max_move, max_expectation = a, curr_expectation
                print 'new max found with expectation : {}'.format(max_expectation)
        # max_move, max_score = pnm.p_negamax(6,0)
        for g in games:
            g.update(max_move[0], placement=max_move[1])
        print "I played a " + str(max_move[0]) + ", yay!"
        if not max_move[0] == PASS_DOMINO:
            tiles[player].remove(max_move[0])
    return tiles
Example #7
0
def calculate_expectation(game, depth, move, samples=40):
    exp_total = 0.0
    remaining_dominoes = make_dominoes()
    players = range(4)
    pnm = ProbabilisticNegaMax(game)
    game.make_probabilistic_move(0, move)
    for t in game.dominos_played:
        if not t == PASS_DOMINO:
            remaining_dominoes.remove(t)
    for _ in range(samples):
        curr_dominoes = list(remaining_dominoes)
        random.shuffle(curr_dominoes)
        old_probabilities = deepcopy(game.probabilities)
        while curr_dominoes:
            curr_domino = curr_dominoes.pop()
            curr_domino_probs = game.probabilities[curr_domino]
            curr_assignment = choice(players, p=curr_domino_probs)
            game._update_probs(curr_domino, curr_assignment)
        exp_total += -pnm.p_negamax_ab(depth, depth, -float('inf'), float('inf'), 1)[1]
        game.probabilities = old_probabilities
    game.undo_move(0, move)
    exp_total /= samples
    return exp_total
Example #8
0
    '''
    Just for simulating a game and checking that I am not a total mess
    '''

    game_tiles = []
    for i in range(7):
        for j in range(i, 7):
            game_tiles.append((i, j))
    my_tiles_input = ['12', '34', '22', '00', '55', '33', '23']
    my_tiles = []
    for t in my_tiles_input:
        my_tiles.append(tuple([int(num) for num in t]))
    starter = 3
    start_tile = (6, 6)
    test = Dominoes(game_tiles, my_tiles, starter, start_tile)
    pnm = ProbabilisticNegaMax(test)
    max_move, max_score = pnm.p_negamax(6, 0)
    print max_move

    # print test.curr_player
    # c = deepcopy(test)
    # prob = test.make_probabilistic_move(3, (PASS_DOMINO,None))
    # print test.curr_player
    # prob = test.make_probabilistic_move(0, (Domino(4, 6), None))
    # print test.curr_player
    # test.undo_move(0, (Domino(4,6), None))
    # print test.curr_player
    # test.undo_move(3, (PASS_DOMINO, None))
    # print test.curr_player
    # c.is_equal(test)