Example #1
0
def compute_relklinker(G, relsim, subs, preds, objs):
    """
	Parameters:
	-----------
	G: rgraph
		See `datastructures`.
	relsim: ndarray
		A square matrix containing relational similarity scores.
	subs, preds, objs: sequence
		Sequences representing the subject, predicate and object of 
		input triples.

	Returns:
	--------
	scores, paths, rpaths, times: sequence
		One sequence each for the proximity scores, shortest path in terms of 
		nodes, shortest path in terms of relation sequence, and times taken.
	"""
    # set weights
    indegsim = weighted_degree(G.indeg_vec, weight=WTFN).reshape((1, G.N))
    indegsim = indegsim.ravel()
    targets = G.csr.indices % G.N
    specificity_wt = indegsim[targets]  # specificity
    G.csr.data = specificity_wt.copy()

    # relation vector
    relations = (G.csr.indices - targets) / G.N
    relations_int = relations.astype(int)  # convert to int for indexing

    # back up
    data = G.csr.data.copy()
    indices = G.csr.indices.copy()
    indptr = G.csr.indptr.copy()

    scores, paths, rpaths, times = [], [], [], []
    for idx, (s, p, o) in enumerate(zip(subs, preds, objs)):
        print('{}. Working on {}..'.format(idx + 1, (s, p, o)), end=' ')
        ts = time()
        # set relational weight
        G.csr.data[targets ==
                   o] = 1  # no cost for target t => max. specificity.
        relsimvec = relsim[p, :]  # specific to predicate p
        relsim_wt = relsimvec[relations_int]  # graph weight
        G.csr.data = np.multiply(relsim_wt, G.csr.data)

        rp = relclosure(G, s, p, o, kind='metric', linkpred=True)
        tend = time()
        print('time: {:.2f}s'.format(tend - ts))
        times.append(tend - ts)
        scores.append(rp.score)
        paths.append(rp.path)
        rpaths.append(rp.relational_path)

        # reset graph
        G.csr.data = data.copy()
        G.csr.indices = indices.copy()
        G.csr.indptr = indptr.copy()
        sys.stdout.flush()
    log.info('')
    return scores, paths, rpaths, times
Example #2
0
def test_graph2():
    sym = True
    adj = np.array([[0, 1, 0, 16], [2, 4, 0, 14], [4, 5, 0, 4], [0, 2, 1, 13],
                    [2, 1, 1, 4], [3, 5, 1, 20], [1, 3, 2, 12], [3, 2, 2, 9],
                    [4, 3, 2, 7]])
    shape = (6, 6, 3)
    G = make_graph(adj[:, :3], shape, values=adj[:, 3], sym=sym, display=False)
    print "Original graph:\n", G

    # set weights
    indegsim = weighted_degree(G.indeg_vec, weight='degree').reshape((1, G.N))
    indegsim = indegsim.ravel()
    targets = G.csr.indices % G.N
    specificity_wt = indegsim[targets]  # specificity
    G.csr.data = specificity_wt.copy()

    # back up
    data = G.csr.data.copy()
    indices = G.csr.indices.copy()
    indptr = G.csr.indptr.copy()

    # Closure
    expect = [[0, 0, 1, 0.20000000000000001, [0, 2, 1], [-1, 1, 1]],
              [0, 0, 2, 1.0, [0, 2], [-1, 1]],
              [0, 0, 3, 0.25, [0, 1, 3], [-1, 0, 2]],
              [0, 0, 4, 0.20000000000000001, [0, 2, 4], [-1, 1, 0]],
              [0, 0, 5, 0.125, [0, 1, 3, 5], [-1, 0, 2, 1]],
              [0, 1, 1, 1.0, [0, 1], [-1, 0]],
              [0, 1, 2, 0.25, [0, 1, 2], [-1, 0, 1]],
              [0, 1, 3, 0.25, [0, 1, 3], [-1, 0, 2]],
              [0, 1, 4, 0.20000000000000001, [0, 2, 4], [-1, 1, 0]],
              [0, 1, 5, 0.125, [0, 1, 3, 5], [-1, 0, 2, 1]],
              [0, 2, 1, 1.0, [0, 1], [-1, 0]], [0, 2, 2, 1.0, [0, 2], [-1, 1]],
              [0, 2, 3, 0.25, [0, 1, 3], [-1, 0, 2]],
              [0, 2, 4, 0.20000000000000001, [0, 2, 4], [-1, 1, 0]],
              [0, 2, 5, 0.125, [0, 1, 3, 5], [-1, 0, 2, 1]],
              [1, 0, 0, 0.20000000000000001, [1, 2, 0], [-1, 1, 1]],
              [1, 0, 2, 1.0, [1, 2], [-1, 1]], [1, 0, 3, 1.0, [1, 3], [-1, 2]],
              [1, 0, 4, 0.20000000000000001, [1, 3, 4], [-1, 2, 2]],
              [1, 0, 5, 0.20000000000000001, [1, 3, 5], [-1, 2, 1]],
              [1, 1, 0, 1.0, [1, 0], [-1, 0]],
              [1, 1, 2, 0.33333333333333331, [1, 0, 2], [-1, 0, 1]],
              [1, 1, 3, 1.0, [1, 3], [-1, 2]],
              [1, 1, 4, 0.20000000000000001, [1, 3, 4], [-1, 2, 2]],
              [1, 1, 5, 0.20000000000000001, [1, 3, 5], [-1, 2, 1]],
              [1, 2, 0, 1.0, [1, 0], [-1, 0]], [1, 2, 2, 1.0, [1, 2], [-1, 1]],
              [1, 2, 3, 0.20000000000000001, [1, 2, 3], [-1, 1, 2]],
              [1, 2, 4, 0.20000000000000001, [1, 3, 4], [-1, 2, 2]],
              [1, 2, 5, 0.20000000000000001, [1, 3, 5], [-1, 2, 1]],
              [2, 0, 0, 1.0, [2, 0], [-1, 1]], [2, 0, 1, 1.0, [2, 1], [-1, 1]],
              [2, 0, 3, 1.0, [2, 3], [-1, 2]],
              [2, 0, 4, 0.20000000000000001, [2, 3, 4], [-1, 2, 2]],
              [2, 0, 5, 0.25, [2, 4, 5], [-1, 0, 0]],
              [2, 1, 0, 0.25, [2, 1, 0], [-1, 1, 0]],
              [2, 1, 1, 0.33333333333333331, [2, 0, 1], [-1, 1, 0]],
              [2, 1, 3, 1.0, [2, 3], [-1, 2]], [2, 1, 4, 1.0, [2, 4], [-1, 0]],
              [2, 1, 5, 0.25, [2, 4, 5], [-1, 0, 0]],
              [2, 2, 0, 1.0, [2, 0], [-1, 1]], [2, 2, 1, 1.0, [2, 1], [-1, 1]],
              [2, 2, 3, 0.25, [2, 1, 3], [-1, 1, 2]],
              [2, 2, 4, 1.0, [2, 4], [-1, 0]],
              [2, 2, 5, 0.25, [2, 4, 5], [-1, 0, 0]],
              [3, 0, 0, 0.25, [3, 1, 0], [-1, 2, 0]],
              [3, 0, 1, 1.0, [3, 1], [-1, 2]], [3, 0, 2, 1.0, [3, 2], [-1, 2]],
              [3, 0, 4, 1.0, [3, 4], [-1, 2]], [3, 0, 5, 1.0, [3, 5], [-1, 1]],
              [3, 1, 0, 0.25, [3, 1, 0], [-1, 2, 0]],
              [3, 1, 1, 1.0, [3, 1], [-1, 2]], [3, 1, 2, 1.0, [3, 2], [-1, 2]],
              [3, 1, 4, 1.0, [3, 4], [-1, 2]],
              [3, 1, 5, 0.25, [3, 4, 5], [-1, 2, 0]],
              [3, 2, 0, 0.25, [3, 1, 0], [-1, 2, 0]],
              [3, 2, 1, 0.20000000000000001, [3, 2, 1], [-1, 2, 1]],
              [3, 2, 2, 0.25, [3, 4, 2], [-1, 2, 0]],
              [3, 2, 4, 0.33333333333333331, [3, 5, 4], [-1, 1, 0]],
              [3, 2, 5, 1.0, [3, 5], [-1, 1]],
              [4, 0, 0, 0.20000000000000001, [4, 2, 0], [-1, 0, 1]],
              [4, 0, 1, 0.20000000000000001, [4, 3, 1], [-1, 2, 2]],
              [4, 0, 2, 0.20000000000000001, [4, 3, 2], [-1, 2, 2]],
              [4, 0, 3, 1.0, [4, 3], [-1, 2]],
              [4, 0, 5, 0.20000000000000001, [4, 3, 5], [-1, 2, 1]],
              [4, 1, 0, 0.20000000000000001, [4, 2, 0], [-1, 0, 1]],
              [4, 1, 1, 0.20000000000000001, [4, 3, 1], [-1, 2, 2]],
              [4, 1, 2, 1.0, [4, 2], [-1, 0]], [4, 1, 3, 1.0, [4, 3], [-1, 2]],
              [4, 1, 5, 1.0, [4, 5], [-1, 0]],
              [4, 2, 0, 0.20000000000000001, [4, 2, 0], [-1, 0, 1]],
              [4, 2, 1, 0.20000000000000001, [4, 3, 1], [-1, 2, 2]],
              [4, 2, 2, 1.0, [4, 2], [-1, 0]],
              [4, 2, 3, 0.33333333333333331, [4, 5, 3], [-1, 0, 1]],
              [4, 2, 5, 1.0, [4, 5], [-1, 0]],
              [5, 0, 0, 0.125, [5, 4, 2, 0], [-1, 0, 0, 1]],
              [5, 0, 1, 0.20000000000000001, [5, 3, 1], [-1, 1, 2]],
              [5, 0, 2, 0.25, [5, 4, 2], [-1, 0, 0]],
              [5, 0, 3, 1.0, [5, 3], [-1, 1]],
              [5, 0, 4, 0.20000000000000001, [5, 3, 4], [-1, 1, 2]],
              [5, 1, 0, 0.125, [5, 4, 2, 0], [-1, 0, 0, 1]],
              [5, 1, 1, 0.20000000000000001, [5, 3, 1], [-1, 1, 2]],
              [5, 1, 2, 0.25, [5, 4, 2], [-1, 0, 0]],
              [5, 1, 3, 0.25, [5, 4, 3], [-1, 0, 2]],
              [5, 1, 4, 1.0, [5, 4], [-1, 0]],
              [5, 2, 0, 0.125, [5, 4, 2, 0], [-1, 0, 0, 1]],
              [5, 2, 1, 0.20000000000000001, [5, 3, 1], [-1, 1, 2]],
              [5, 2, 2, 0.25, [5, 4, 2], [-1, 0, 0]],
              [5, 2, 3, 1.0, [5, 3], [-1, 1]], [5, 2, 4, 1.0, [5, 4], [-1, 0]]]
    results = []
    itr = 0
    for s in xrange(G.N):
        for p in xrange(G.R):
            for o in xrange(G.N):
                if s == o:
                    continue
                G.csr.data[targets == o] = 1
                rp = relclosure(G, s, p, o, kind='metric', linkpred=True)
                tmp = [
                    rp.source, rp.relation, rp.target, rp.score, rp.path,
                    rp.relational_path
                ]
                results.append(tmp)
                assert allclose(expect[itr], tmp)
                itr += 1
                G.csr.data = data.copy()
                G.csr.indices = indices.copy()
                G.csr.indptr = indptr.copy()