def benchmark_align_corpus(corpus_dir, dict_path, output_directory, speaker_characters, fast, output_model_path, num_jobs, verbose): beg = time.time() align_corpus(corpus_dir, dict_path, output_directory, speaker_characters, fast, output_model_path, num_jobs, verbose, False) end = time.time() return [(end - beg)]
def benchmark_align_corpus(): beg = time.time() align_corpus(corpus_dir, dict_path, output_directory, temp_dir, model_path, args) end = time.time() dict_data = {'Computer': platform.node(), 'Date': str(datetime.now()), 'Corpus': corpus_dir, 'Type of benchmark': 'align english', 'Total time': end - beg, 'Num_jobs': args.num_jobs} return dict_data
self.verbose = False self.clean = True self.no_speaker_adaptation = False self.temp_directory = '/data/mmcauliffe/temp/MFA' args = DummyArgs() args.corpus_directory = '/media/share/datasets/aligner_benchmarks/sorted_quebec_french' args.dictionary_path = '/media/share/corpora/GP_for_MFA/FR/dict/fr.dict' args.output_directory = '/data/mmcauliffe/aligner-output/aligned_quebec_french' args.output_model_path = '/data/mmcauliffe/aligner-models/french_qc.zip' if not os.path.exists(args.output_model_path): fix_path() try: beg = time.time() align_corpus(args) end = time.time() duration = end - beg except Exception as e: exc_type, exc_value, exc_traceback = sys.exc_info() print('{} encountered an error!'.format(full_name)) traceback.print_exception(exc_type, exc_value, exc_traceback, file=sys.stdout) unfix_path() csv_columns = ['Computer','Date','Corpus', 'Version', 'Language', 'Type of benchmark', 'Total time', 'Num_jobs'] now = datetime.now() date = str(now.year)+str(now.month)+str(now.day) dict_data = {'Computer': platform.node(),
def benchmark_align_corpus(): beg = time.time() align_corpus(corpus_dir, dict_path, output_directory, temp_dir, output_model_path, args) end = time.time() return [(end - beg)]
self.clean = True self.no_speaker_adaptation = False self.temp_directory = '/data/mmcauliffe/temp/MFA' args = DummyArgs() args.corpus_directory = '/media/share/datasets/aligner_benchmarks/sorted_quebec_french' args.dictionary_path = '/media/share/corpora/GP_for_MFA/FR/dict/fr.dict' args.output_directory = '/data/mmcauliffe/aligner-output/aligned_quebec_french' args.output_model_path = '/data/mmcauliffe/aligner-models/french_qc.zip' if not os.path.exists(args.output_model_path): fix_path() try: beg = time.time() align_corpus(args) end = time.time() duration = end - beg except Exception as e: exc_type, exc_value, exc_traceback = sys.exc_info() print('{} encountered an error!'.format(full_name)) traceback.print_exception(exc_type, exc_value, exc_traceback, file=sys.stdout) unfix_path() csv_columns = [ 'Computer', 'Date', 'Corpus', 'Version', 'Language', 'Type of benchmark', 'Total time', 'Num_jobs' ]
def align_gp(lang_code, full_name): if lang_code == 'FR': args = DummyArgs() args.corpus_directory = '/media/share/corpora/GP_for_MFA/{}'.format(lang_code) args.dictionary_path = '/media/share/corpora/GP_for_MFA/{0}/dict/fr.dict'.format(lang_code) args.output_directory = '/data/mmcauliffe/aligner-output/{}'.format(lang_code) args.output_model_path = '/data/mmcauliffe/aligner-models/{}_prosodylab.zip'.format(full_name) if not os.path.exists(args.output_model_path): try: align_corpus(args) except Exception as e: exc_type, exc_value, exc_traceback = sys.exc_info() print('{} encountered an error!'.format(full_name)) traceback.print_exception(exc_type, exc_value, exc_traceback, file=sys.stdout) args = DummyArgs() args.corpus_directory = '/media/share/corpora/GP_for_MFA/{}'.format(lang_code) args.dictionary_path = '/media/share/corpora/GP_for_MFA/{0}/dict/lexique.dict'.format(lang_code) args.output_directory = '/data/mmcauliffe/aligner-output/{}'.format(lang_code) args.output_model_path = '/data/mmcauliffe/aligner-models/{}_lexique.zip'.format(full_name) if not os.path.exists(args.output_model_path): try: align_corpus(args) except Exception as e: exc_type, exc_value, exc_traceback = sys.exc_info() print('{} encountered an error!'.format(full_name)) traceback.print_exception(exc_type, exc_value, exc_traceback, file=sys.stdout) elif lang_code == 'GE': args = DummyArgs() args.corpus_directory = '/media/share/corpora/GP_for_MFA/{}'.format(lang_code) args.dictionary_path = '/media/share/corpora/GP_for_MFA/{0}/dict/de.dict'.format(lang_code) args.output_directory = '/data/mmcauliffe/aligner-output/{}'.format(lang_code) args.output_model_path = '/data/mmcauliffe/aligner-models/{}_prosodylab.zip'.format(full_name) if not os.path.exists(args.output_model_path): try: align_corpus(args) except Exception as e: exc_type, exc_value, exc_traceback = sys.exc_info() print('{} encountered an error!'.format(full_name)) traceback.print_exception(exc_type, exc_value, exc_traceback, file=sys.stdout) args = DummyArgs() args.corpus_directory = '/media/share/corpora/GP_for_MFA/{}'.format(lang_code) args.dictionary_path = '/media/share/corpora/GP_for_MFA/{0}/dict/{0}_dictionary.txt'.format(lang_code) args.output_directory = '/data/mmcauliffe/aligner-output/{}'.format(lang_code) args.output_model_path = '/data/mmcauliffe/aligner-models/{}.zip'.format(full_name) if os.path.exists(args.output_model_path): print('skipping {}, output model already exists'.format(full_name)) return try: beg = time.time() align_corpus(args) end = time.time() duration = end - beg except Exception as e: exc_type, exc_value, exc_traceback = sys.exc_info() print('{} encountered an error!'.format(full_name)) traceback.print_exception(exc_type, exc_value, exc_traceback, file=sys.stdout) return csv_columns = ['Computer','Date','Corpus', 'Version', 'Language', 'Type of benchmark', 'Total time', 'Num_jobs'] now = datetime.now() date = str(now.year)+str(now.month)+str(now.day) dict_data = {'Computer': platform.node(), 'Date': date, 'Corpus': args.corpus_directory, 'Version': aligner.__version__, 'Language': lang_code, 'Type of benchmark': 'train and align', 'Total time': duration, 'Num_jobs': args.num_jobs} if not os.path.exists(csv_path): with open(csv_path, 'a') as csv_file: writer = csv.DictWriter(csv_file, fieldnames=csv_columns) writer.writeheader() with open(csv_path, 'a') as csv_file: writer = csv.DictWriter(csv_file, fieldnames=csv_columns) writer.writerow(dict_data)