def test_can_init_scaled_dot(self):
     legacy_attention = Attention.from_params(
         Params({
             "type": "scaled_dot_product",
             "scaling_factor": 9
         }))
     isinstance(legacy_attention, ScaledDotProductAttention)
Example #2
0
 def test_can_init_linear(self):
     legacy_attention = Attention.from_params(
         Params({
             "type": "linear",
             "tensor_1_dim": 3,
             "tensor_2_dim": 3
         }))
     isinstance(legacy_attention, LinearAttention)
    def __init__(
        self,
        vocab: Vocabulary,
        text_field_embedder: TextFieldEmbedder,
        elmo_text_field_embedder: TextFieldEmbedder,
        quote_response_encoder: Seq2SeqEncoder,
        quote_response_encoder_aux: Seq2VecEncoder,
        classifier_feedforward: FeedForward,
        classifier_feedforward_2: FeedForward,
        initializer: InitializerApplicator = InitializerApplicator(),
        regularizer: Optional[RegularizerApplicator] = None,
        report_auxiliary_metrics: bool = False,
        # predict_mode: bool = False,
    ) -> None:

        super(SarcasmClassifier, self).__init__(vocab, regularizer)

        self.text_field_embedder = text_field_embedder
        self.elmo_text_field_embedder = elmo_text_field_embedder
        self.num_classes = self.vocab.get_vocab_size("labels")
        self.num_classes_emotions = self.vocab.get_vocab_size("emotion_labels")
        self.quote_response_encoder = quote_response_encoder
        self.quote_response_encoder_aux = quote_response_encoder_aux
        self.classifier_feedforward = classifier_feedforward
        self.classifier_feedforward_2 = classifier_feedforward_2
        self.attention_seq2seq = Attention(
            quote_response_encoder.get_output_dim())

        self.label_acc_metrics = {"accuracy": CategoricalAccuracy()}
        self.label_f1_metrics = {}
        self.label_f1_metrics_emotions = {}
        # for i in range(self.num_classes):
        #     self.label_f1_metrics[vocab.get_token_from_index(index=i, namespace="label")] =\
        #         F1Measure(positive_label=i)

        for i in range(self.num_classes):
            self.label_f1_metrics[vocab.get_token_from_index(index=i, namespace="labels")] =\
                F1Measure(positive_label=i)
        for i in range(self.num_classes_emotions):
            self.label_f1_metrics_emotions[vocab.get_token_from_index(index=i, namespace="emotion_labels")] =\
                F1Measure(positive_label=i)

        self.loss = torch.nn.CrossEntropyLoss()

        # self.attention_seq2seq = Attention(quote_response_encoder.get_output_dim())

        self.report_auxiliary_metrics = report_auxiliary_metrics
        # self.predict_mode = predict_mode

        initializer(self)
Example #4
0
from __future__ import absolute_import
import torch

#overrides
from allennlp.modules.attention.attention import Attention
from allennlp.modules.similarity_functions import DotProductSimilarity, SimilarityFunction


class LegacyAttention(Attention):
    u"""
    Computes attention between a vector and a matrix using a similarity function.
    This should be considered deprecated, as it consumes more memory than the specialized attention modules.
    """
    def __init__(self, similarity_function=None, normalize=True):
        super(LegacyAttention, self).__init__(normalize)
        self._similarity_function = similarity_function or DotProductSimilarity(
        )

    #overrides
    def _forward_internal(self, vector, matrix):
        tiled_vector = vector.unsqueeze(1).expand(vector.size()[0],
                                                  matrix.size()[1],
                                                  vector.size()[1])
        return self._similarity_function(tiled_vector, matrix)


LegacyAttention = Attention.register(u"legacy")(LegacyAttention)
    activation : ``Activation``, optional (default=linear (i.e. no activation))
        An activation function applied after the ``x^T W y + b`` calculation.  Default is no
        activation.
    normalize : ``bool``, optional (default: ``True``)
        If true, we normalize the computed similarities with a softmax, to return a probability
        distribution for your attention.  If false, this is just computing a similarity score.
    """
    def __init__(self,
                 vector_dim,
                 matrix_dim,
                 activation=None,
                 normalize=True):
        super(BilinearAttention, self).__init__(normalize)
        self._weight_matrix = Parameter(torch.Tensor(vector_dim, matrix_dim))
        self._bias = Parameter(torch.Tensor(1))
        self._activation = activation or Activation.by_name(u'linear')()
        self.reset_parameters()

    def reset_parameters(self):
        torch.nn.init.xavier_uniform_(self._weight_matrix)
        self._bias.data.fill_(0)

    #overrides
    def _forward_internal(self, vector, matrix):
        intermediate = vector.mm(self._weight_matrix).unsqueeze(1)
        return self._activation(
            intermediate.bmm(matrix.transpose(1, 2)).squeeze(1) + self._bias)


BilinearAttention = Attention.register(u"bilinear")(BilinearAttention)
 def test_can_init_cosine(self):
     legacy_attention = Attention.from_params(Params({"type": "cosine"}))
     isinstance(legacy_attention, CosineAttention)
 def test_can_init_legacy(self):
     legacy_attention = Attention.from_params(Params({"type": "legacy"}))
     isinstance(legacy_attention, LegacyAttention)
Example #8
0
 def test_can_init_dot(self):
     legacy_attention = Attention.from_params(
         Params({"type": "dot_product"}))
     isinstance(legacy_attention, DotProductAttention)
 def test_can_init_dot(self):
     legacy_attention = Attention.from_params(Params({"type": "dot_product"}))
     isinstance(legacy_attention, DotProductAttention)
 def test_can_init_cosine(self):
     legacy_attention = Attention.from_params(Params({"type": "cosine"}))
     isinstance(legacy_attention, CosineAttention)
Example #11
0
 def test_can_init_linear(self):
     legacy_attention = Attention.from_params(Params({"type": "linear",
                                                      "tensor_1_dim": 3,
                                                      "tensor_2_dim": 3}))
     isinstance(legacy_attention, LinearAttention)