Example #1
0
    def config(self, elems):
        config = self.parameter_defaults(
            top_k=100,
            min_time=0,
            seed=0,
            out_file=None,
            filters=[],
            loggers=[],
        )

        model = rs.PersonalPopularityModel()
        updater = rs.PersonalPopularityModelUpdater()
        updater.set_model(model)

        simple_learner = rs.SimpleLearner()
        simple_learner.add_simple_updater(updater)
        simple_learner.set_model(model)

        learner = rs.LearnerPeriodicDelayedWrapper(
            **self.parameter_defaults(period=86400, delay=86400))
        learner.set_wrapped_learner(simple_learner)

        model = model
        learner = learner

        return {'config': config, 'model': model, 'learner': learner}
    def config(self, elems):
        config = self.parameter_defaults(
            top_k=100,
            min_time=0,
            seed=0,
            out_file=None,
            filters=[],
            loggers=[],
        )

        model = rs.PopularityModel()
        updater = rs.PopularityTimeFrameModelUpdater(**self.parameter_defaults(
          tau=86400
        ))
        updater.set_model(model)
        learner = rs.SimpleLearner()
        learner.add_simple_updater(updater)
        learner.set_model(model)

        model = model
        learner = learner

        return {
            'config': config,
            'model': model,
            'learner': learner
        }
Example #3
0
    def _config(self, top_k, seed):
        model_parameters = self.parameter_defaults(
            begin_min=-0.01,
            begin_max=0.01,
            dimension=10,
            user_attributes=None,
            item_attributes=None,
        )
        if (model_parameters['user_attributes'] is not None):
            container = rs.FileSparseAttributeContainer()
            container.load_from_file(model_parameters['user_attributes'])
            model_parameters['user_attributes'] = container

        if (model_parameters['item_attributes'] is not None):
            container = rs.FileSparseAttributeContainer()
            container.load_from_file(model_parameters['item_attributes'])
            model_parameters['item_attributes'] = container

        model = rs.FmModel(**model_parameters)

        updater = rs.FmModelUpdater(
            **self.parameter_defaults(learning_rate=0.05, ))
        updater.set_model(model)

        negative_sample_generator = rs.UniformNegativeSampleGenerator(
            **self.parameter_defaults(
                negative_rate=0.0,
                initialize_all=False,
                seed=67439852,
                filter_repeats=False,
            ))
        negative_sample_generator.add_updater(updater)

        return (model, [negative_sample_generator], [])
    def config(self, elems):
        config = self.parameter_defaults(
            top_k=100,
            min_time=0,
            seed=0,
            out_file=None,
            filters=[],
            loggers=[],
        )

        model = rs.TransitionProbabilityModel()
        updater = rs.TransitionProbabilityModelUpdater(
            **self.parameter_defaults(filter_freq_updates=False,
                                      mode_="normal",
                                      label_transition_mode_=False,
                                      label_file_name_=""))
        updater.set_model(model)
        learner = rs.SimpleLearner()
        learner.add_simple_updater(updater)
        learner.set_model(model)

        model = model
        learner = learner
        filters = [model]

        return {'config': config, 'model': model, 'learner': learner}
    def config(self, elems):
        config = self.parameter_defaults(
            top_k=100,
            min_time=0,
            seed=0,
            out_file=None,
            filters=[],
            loggers=[],
        )

        model = rs.NearestNeighborModel(
            **self.parameter_defaults(gamma=0.8,
                                      norm="num",
                                      direction="forward",
                                      gamma_threshold=0,
                                      num_of_neighbors=10))
        updater = rs.NearestNeighborModelUpdater(**self.parameter_defaults(
            compute_similarity_period=86400, period_mode="time-based"))
        updater.set_model(model)
        learner = rs.SimpleLearner()
        learner.add_simple_updater(updater)
        learner.set_model(model)

        model = model
        learner = learner
        filters = [model]

        return {'config': config, 'model': model, 'learner': learner}
Example #6
0
    def _config(self, top_k, seed):
        model = rs.PopularityModel()
        updater = rs.PopularityTimeFrameModelUpdater(**self.parameter_defaults(
          tau=86400
        ))
        updater.set_model(model)

        return (model, updater, [], [])
    def _config(self, top_k, seed):
        model = rs.TransitionProbabilityModel()
        updater = rs.TransitionProbabilityModelUpdater(
            **self.parameter_defaults(filter_freq_updates=False,
                                      mode_="normal",
                                      label_transition_mode_=False,
                                      label_file_name_=""))
        updater.set_model(model)

        return (model, updater, [model], [])
Example #8
0
    def _config(self, top_k, seed):
        model = ag.PopularityModel()
        updater = ag.PopularityModelUpdater()
        updater.set_model(model)
        label_filter = ag.LabelFilter(**self.parameter_defaults(
            label_file_name=""))
        adapter = ag.WhitelistFilter2ModelAdapter()
        adapter.set_model(model)
        adapter.set_whitelist_filter(label_filter)

        return (adapter, [updater, label_filter], []
                )  #note: do not forget to add filter as an updater
Example #9
0
    def _fit(self, recommender_data, users, items, matrix):
        model = rs.PopularityModel()

        updater = rs.PopularityModelUpdater()
        updater.set_model(model)

        learner = rs.OfflineIteratingLearner(
            **self.parameter_defaults(seed=67439852, ))
        learner.set_model(model)
        learner.add_simple_updater(updater)
        learner.set_recommender_data(recommender_data)

        return (model, learner)
Example #10
0
    def config(self, elems):
        config = self.parameter_defaults(
            top_k=100,
            min_time=0,
            seed=0,
            out_file=None,
            filters=[],
            loggers=[],
        )

        model = rs.FactorModel(**self.parameter_defaults(
            begin_min=-0.01,
            begin_max=0.01,
            dimension=10,
            initialize_all=False,
        ))

        updater = rs.FactorModelGradientUpdater(**self.parameter_defaults(
            learning_rate=0.05, regularization_rate=0.0))
        updater.set_model(model)

        learner = rs.ImplicitGradientLearner()
        learner.add_gradient_updater(updater)
        learner.set_model(model)

        negative_sample_generator = rs.UniformNegativeSampleGenerator(
            **self.parameter_defaults(
                negative_rate=0.0,
                initialize_all=False,
                seed=0,
            ))
        learner.set_negative_sample_generator(negative_sample_generator)

        pointWise = rs.ObjectiveMSE()
        gradient_computer = rs.GradientComputerPointWise()
        gradient_computer.set_objective(pointWise)
        gradient_computer.set_model(model)
        learner.set_gradient_computer(gradient_computer)

        fmfilter = rs.FactorModelFilter()
        fmfilter.set_model(model)

        prediction_creator = rs.PredictionCreatorGlobal(
            **self.parameter_defaults(
                top_k=10000,
                # initial_threshold=1000,
                lookback=0))
        prediction_creator.set_model(model)
        prediction_creator.set_filter(fmfilter)
        online_predictor = rs.OnlinePredictor(**self.parameter_defaults(
            min_time=0, time_frame=86400, file_name=""))
        online_predictor.set_prediction_creator(prediction_creator)

        config['loggers'].append(online_predictor)

        return {'config': config, 'model': model, 'learner': learner}
Example #11
0
    def _fit(self, recommender_data, users, items, matrix):
        model = rs.PopularityModel()

        updater = rs.PopularityModelUpdater()
        updater.set_model(model)

        learner = rs.OfflineIteratingOnlineLearnerWrapper(
            seed=0,
            number_of_iterations=0,
            shuffle=False,
        )
        learner.add_updater(updater)

        return (model, learner)
    def _config(self, top_k, seed):
        model = rs.NearestNeighborModel(**self.parameter_defaults(
          gamma=0.8,
          norm="num",
          direction="forward",
          gamma_threshold=0,
          num_of_neighbors=10
        ))
        updater = rs.NearestNeighborModelUpdater(**self.parameter_defaults(
          compute_similarity_period=86400,
          period_mode="time-based"
        ))
        updater.set_model(model)

        return (model, updater, [])
Example #13
0
    def recommend(self, users=None, k=100, exclude_known=True):
        """Give toplist recommendations for users.

        Parameters
        ----------
        users : list
            List of users to give recommendation for.
        k : int
            Size of toplists
        exclude_known : bool
            Whether to exclude (user,item) pairs in the train dataset from the toplists.

        Returns
        -------
        pandas.DataFrame
          DataFrame of recommendations, with columns **user**, **item** and **rank**.

        """

        rs.collect()
        dummy_model_filter = rs.DummyModelFilter()
        dummy_model_filter.set_items(self.items)
        dummy_model_filter.set_users(self.users)

        pred_creator = rs.PredictionCreatorPersonalized(
            top_k=k, lookback=1 if exclude_known else 0)

        pred_creator.set_filter(dummy_model_filter)
        pred_creator.set_train_matrix(self.matrix)
        pred_creator.set_model(self.model)

        ranking_computer = rs.OfflineRankingComputer(top_k=k)
        ranking_computer.set_items(self.items)
        if users is None:
            ranking_computer.set_users(self.users)
        else:
            ranking_computer.set_users(
                rs.VectorInt(pd.Series(users).unique().tolist()))

        ranking_computer.set_toplist_creator(pred_creator)

        created_objects = rs.get_and_clean()
        # rs.initialize_all(created_objects)
        for i in created_objects:
            rs.run_self_test(i)

        preds = ranking_computer.compute()
        preds_df = pd.DataFrame({
            'user': preds.users,
            'item': preds.items,
            'rank': preds.ranks
        }).sort_values(['user', 'rank'])[['user', 'item', 'rank']]
        return preds_df
def readFactorModel(file, dimensions):
    """Utility for reading binary models --saved by online experiments-- into
    pandas DataFrames.
    """
    r = ag.FactorModelReader()
    uif = r.read(file, dimensions)

    users = []
    user_factors = []
    for f in uif.user_factors:
        users.append(f.entity)
        user_factors.append(f.factors)
    items = []
    item_factors = []
    for f in uif.item_factors:
        items.append(f.entity)
        item_factors.append(f.factors)

    user_df = pd.DataFrame.from_records(user_factors,
                                        columns=range(1, dimensions + 1))
    user_df['user'] = users
    user_df.set_index('user', inplace=True)

    item_df = pd.DataFrame.from_records(item_factors,
                                        columns=range(1, dimensions + 1))
    item_df['item'] = items
    item_df.set_index('item', inplace=True)

    return (user_df, item_df)
Example #15
0
 def _fit(self, recommender_data, users, items, matrix):
     model = rs.EigenFactorModel(**self.parameter_defaults(
         begin_min=-0.01,
         begin_max=0.01,
         dimension=10,
         seed=67439852,
     ))
     learner = rs.OfflineEigenFactorModelALSLearner(
         **self.parameter_defaults(
             number_of_iterations=3,
             regularization_lambda=0.0001,
             alpha=40,
             implicit=1,
             clear_before_fit=1,
         ))
     learner.set_model(model)
     return (model, learner)
Example #16
0
 def test_init(self):
     df = pd.DataFrame({
         'time': [30, 20, 10],
         'item': [3, 2, 1],
         'duration': [10, 10, 10]
     })
     a = AvailabilityFilter(df)  #todo: needs experiment environment
     r = rs.RecDat()
     r.time = 21
Example #17
0
    def fit(self, X, y=None, columns={}):
        """Fit the model to a dataset.

        Parameters
        ----------
        X : pandas.DataFrame
            The input data, must contain the columns **user** and **item**. May contain the **score** column as well.
        y : pandas.Series or list
            The target values. If not set (and X doesn't contain the score column), it is assumed to be constant 1 (implicit recommendation).
        columns : dict
            Optionally the mapping of the input DataFrame's columns' names to the expected ones.

        """
        rs.collect()
        data = X
        if y is None:
            if 'score' not in X:
                data['score'] = np.ones(len(X))
        else:
            if 'score' in X:
                raise ValueError("y and score column both provided")
            else:
                data['score'] = y

        recommender_data = DataframeData(data, columns=columns)

        matrix = recommender_data.get_full_matrix()
        users = rs.VectorInt([])
        items = rs.VectorInt([])
        recommender_data.get_users_into(users)
        recommender_data.get_items_into(items)

        (model, learner) = self._fit(recommender_data, users, items, matrix)

        created_objects = rs.get_and_clean()
        rs.initialize_all(created_objects)
        for i in created_objects:
            rs.run_self_test(i)
        self.check_unused_parameters()

        learner.fit(recommender_data)

        self.objects = created_objects
        self.model = model
        self.items = items
        self.users = users
        self.matrix = matrix
        self.recommender_data = recommender_data
 def test_init(self):
     df = pd.DataFrame({
         'time': [30, 20, 10],
         'item': [3, 2, 1],
         'duration': [10, 10, 10]
     })
     a = prs.AvailabilityFilter(df)
     r = rs.RecDat()
     r.time = 21
     a.run(r)
Example #19
0
    def _config(self, top_k, seed):

        model = rs.FactorModel(**self.parameter_defaults(
            begin_min=-0.01,
            begin_max=0.01,
            dimension=10,
            initialize_all=False,
        ))

        updater = rs.FactorModelGradientUpdater(**self.parameter_defaults(
            learning_rate=0.05, regularization_rate=0.0))
        updater.set_model(model)

        learner = rs.ImplicitGradientLearner()
        learner.add_gradient_updater(updater)
        learner.set_model(model)

        negative_sample_generator = rs.UniformNegativeSampleGenerator(
            **self.parameter_defaults(
                negative_rate=0.0,
                initialize_all=False,
                seed=67439852,
                filter_repeats=False,
            ))
        learner.set_negative_sample_generator(negative_sample_generator)

        point_wise = rs.ObjectiveMSE()
        gradient_computer = rs.GradientComputerPointWise()
        gradient_computer.set_objective(point_wise)
        gradient_computer.set_model(model)
        learner.set_gradient_computer(gradient_computer)

        return (model, learner, [])
Example #20
0
    def _fit(self, recommender_data, users, items, matrix):
        model = rs.FactorModel(**self.parameter_defaults(
            begin_min=-0.01,
            begin_max=0.01,
            dimension=10,
            initialize_all=False,
            seed=254938879,
        ))

        updater = rs.FactorModelGradientUpdater(**self.parameter_defaults(
            learning_rate=0.05, regularization_rate=0.0))
        updater.set_model(model)

        negative_sample_generator = rs.UniformNegativeSampleGenerator(
            **self.parameter_defaults(negative_rate=0))
        negative_sample_generator.set_train_matrix(matrix)
        negative_sample_generator.set_items(items)

        point_wise = rs.ObjectiveMSE()
        gradient_computer = rs.GradientComputerPointWise()
        gradient_computer.set_objective(point_wise)
        gradient_computer.set_model(model)

        learner = rs.OfflineIteratingImplicitLearner(**self.parameter_defaults(
            seed=254938879,
            number_of_iterations=9,
        ))
        learner.set_gradient_computer(gradient_computer)
        learner.set_negative_sample_generator(negative_sample_generator)
        learner.set_model(model)
        learner.set_recommender_data(recommender_data)
        learner.add_gradient_updater(updater)

        return (model, learner)
    def _config(self, top_k, seed):
        model = rs.AsymmetricFactorModel(
            **self.parameter_defaults(begin_min=-0.01,
                                      begin_max=0.01,
                                      dimension=10,
                                      use_sigmoid=False,
                                      norm_type="exponential",
                                      gamma=0.8,
                                      initialize_all=False))

        gradient_updater = rs.AsymmetricFactorModelGradientUpdater(
            **self.parameter_defaults(
                learning_rate=0.05,
                cumulative_item_updates=False,
            ))
        gradient_updater.set_model(model)
        simple_updater = rs.AsymmetricFactorModelUpdater()
        simple_updater.set_model(model)

        point_wise = rs.ObjectiveMSE()
        gradient_computer = rs.GradientComputerPointWise()
        gradient_computer.set_objective(point_wise)
        gradient_computer.set_model(model)
        gradient_computer.add_gradient_updater(gradient_updater)

        negative_sample_generator = rs.UniformNegativeSampleGenerator(
            **self.parameter_defaults(
                negative_rate=20,
                initialize_all=False,
                seed=928357823,
            ))
        negative_sample_generator.add_updater(gradient_computer)

        return (model, [negative_sample_generator, simple_updater], [])
Example #22
0
    def _fit(self, recommender_data, users, items, matrix):
        model = rs.FactorModel(**self.parameter_defaults(
            begin_min=-0.01,
            begin_max=0.01,
            dimension=10,
            initialize_all=False,
            seed=self.parameter_default('factor_seed', 67439852),
        ))

        updater = rs.FactorModelGradientUpdater(**self.parameter_defaults(
            learning_rate=0.05, regularization_rate=0.0))
        updater.set_model(model)

        point_wise = rs.ObjectiveMSE()
        gradient_computer = rs.GradientComputerPointWise()
        gradient_computer.set_objective(point_wise)
        gradient_computer.set_model(model)
        gradient_computer.add_gradient_updater(updater)

        negative_sample_generator = rs.UniformNegativeSampleGenerator(
            **self.parameter_defaults(
                negative_rate=0, initialize_all=False, max_item=-1))
        negative_sample_generator.set_train_matrix(matrix)
        negative_sample_generator.set_items(items)
        negative_sample_generator.add_updater(gradient_computer)

        learner = rs.OfflineIteratingOnlineLearnerWrapper(
            **self.parameter_defaults(
                seed=self.parameter_default('learner_seed', 254938879),
                number_of_iterations=9,
                shuffle=True,
            ))
        learner.add_iterate_updater(negative_sample_generator)

        return (model, learner)
Example #23
0
    def _fit(self, recommender_data, users, items, matrix):
        model = rs.NearestNeighborModel(
            gamma=1,
            norm="off",
            direction="both",
            gamma_threshold=0,
            num_of_neighbors=self.parameter_default("num_of_neighbors", 10),
        )

        updater = rs.NearestNeighborModelUpdater(
            period_mode="off",
        )
        updater.set_model(model)

        learner = rs.OfflineIteratingOnlineLearnerWrapper(
            seed=254938879,
            number_of_iterations=0,
            shuffle=False,
        )
        learner.add_updater(updater)

        return (model, learner)
Example #24
0
    def config(self, elems):
        config = self.parameter_defaults(
            top_k=100,
            min_time=0,
            seed=0,
            out_file=None,
            filters=[],
            loggers=[],
        )

        model = rs.SvdppModel(**self.parameter_defaults(
            begin_min=-0.01,
            begin_max=0.01,
            dimension=10,
            use_sigmoid=False,
            norm_type="exponential",
            gamma=0.8,
            user_vector_weight=0.5,
            history_weight=0.5
        ))

        gradient_updater = rs.SvdppModelGradientUpdater(**self.parameter_defaults(
            learning_rate=0.05,
            cumulative_item_updates=False,
        ))
        gradient_updater.set_model(model)
        simple_updater = rs.SvdppModelUpdater()
        simple_updater.set_model(model)

        learner = rs.ImplicitGradientLearner()
        learner.add_gradient_updater(gradient_updater)
        learner.add_simple_updater(simple_updater)
        learner.set_model(model)

        negative_sample_generator = rs.UniformNegativeSampleGenerator(**self.parameter_defaults(
            negative_rate=20,
            initialize_all=False,
            seed=928357823,
        ))
        learner.set_negative_sample_generator(negative_sample_generator)

        point_wise = rs.ObjectiveMSE()
        gradient_computer = rs.GradientComputerPointWise()
        gradient_computer.set_objective(point_wise)
        gradient_computer.set_model(model)
        learner.set_gradient_computer(gradient_computer)

        return {
            'config': config,
            'model': model,
            'learner': learner
        }
Example #25
0
    def _config(self, top_k, seed):
        #config = self.parameter_defaults(
        #    top_k=100,
        #    evaluation_start_time=0,
        #    seed=0,
        #    out_file=None,
        #    filters=[],
        #    loggers=[],
        #)

        model = rs.FactorModel(**self.parameter_defaults(
            begin_min=-0.01,
            begin_max=0.01,
            dimension=10,
            initialize_all=False,
        ))

        updater = rs.FactorModelGradientUpdater(**self.parameter_defaults(
            learning_rate=0.05, regularization_rate=0.0))
        updater.set_model(model)

        point_wise = rs.ObjectiveMSE()
        gradient_computer = rs.GradientComputerPointWise()
        gradient_computer.set_objective(point_wise)
        gradient_computer.set_model(model)
        gradient_computer.add_gradient_updater(updater)

        negative_sample_generator = rs.UniformNegativeSampleGenerator(
            **self.parameter_defaults(
                negative_rate=100,
                initialize_all=False,
                seed=67439852,
                filter_repeats=False,
            ))
        negative_sample_generator.add_updater(gradient_computer)

        return (model, [negative_sample_generator], [])
    def _config(self, top_k, seed):
        model = rs.FactorModel(**self.parameter_defaults(
            begin_min=-0.01,
            begin_max=0.01,
            dimension=10,
            initialize_all=False,
        ))

        updater = rs.FactorModelGradientUpdater(**self.parameter_defaults(
            learning_rate=0.05, regularization_rate=0.0))
        updater.set_model(model)

        learner_parameters = self.parameter_defaults(
            number_of_iterations=3,
            start_time=-1,
            period_length=86400,
            write_model=False,
            read_model=False,
            clear_model=False,
            learn=True,
            base_out_file_name="",
            base_in_file_name="",
            timeframe_length=0,
        )

        if (learner_parameters['timeframe_length'] == 0):
            learner_parameters.pop('timeframe_length', None)
            learner = rs.OfflineImplicitGradientLearner(**learner_parameters)
        else:
            learner = rs.PeriodicTimeframeImplicitGradientLearner(
                **learner_parameters)

        learner.set_model(model)
        learner.add_gradient_updater(updater)

        negative_sample_generator = rs.UniformNegativeSampleGenerator(
            **self.parameter_defaults(
                negative_rate=0,
                initialize_all=False,
                seed=67439852,
                filter_repeats=False,
            ))

        learner.set_negative_sample_generator(negative_sample_generator)

        point_wise = rs.ObjectiveMSE()
        gradient_computer = rs.GradientComputerPointWise()
        gradient_computer.set_objective(point_wise)
        gradient_computer.set_model(model)
        learner.set_gradient_computer(gradient_computer)

        return (model, learner, [], [])
Example #27
0
    def predict(self, X):
        """Predict the target values on X.

        Parameters
        ----------
        X : pandas.DataFrame
            The input data, must contain the columns **user** and **item**.

        Returns
        -------
        list
          List of predictions

        """
        predictor = rs.MassPredictor()
        predictor.set_model(self.model)
        return predictor.predict(X['user'].tolist(), X['item'].tolist())
    def _config(self, top_k, seed):
        model = rs.CombinedModel(**self.parameter_defaults(
            los_file_name="my_log_file",
            log_frequency=100000,
            use_user_weights=False,
        ))
        pop_model = rs.PopularityModel()
        model.add_model(pop_model)
        pop_updater = rs.PopularityModelUpdater()
        pop_updater.set_model(pop_model)

        factor_model = rs.FactorModel(**self.parameter_defaults(
            begin_min=-0.01,
            begin_max=0.01,
            dimension=10,
            initialize_all=False,
        ))
        model.add_model(factor_model)

        factor_updater = rs.FactorModelGradientUpdater(
            **self.parameter_defaults(learning_rate=0.05,
                                      regularization_rate=0.0))
        factor_updater.set_model(factor_model)

        objective = rs.ObjectiveMSE()
        gradient_computer = rs.GradientComputerPointWise()
        gradient_computer.set_objective(objective)
        gradient_computer.set_model(factor_model)
        gradient_computer.add_gradient_updater(factor_updater)

        negative_sample_generator = rs.UniformNegativeSampleGenerator(
            **self.parameter_defaults(
                negative_rate=10,
                initialize_all=False,
                seed=67439852,
                filter_repeats=False,
            ))
        negative_sample_generator.add_updater(gradient_computer)

        return (model, [pop_updater, negative_sample_generator], [], [])
Example #29
0
    def config(self, elems):
        config = self.parameter_defaults(
            top_k=100,
            min_time=0,
            loggers=[],
        )

        model = rs.FactorModel(**self.parameter_defaults(
            begin_min=-0.01,
            begin_max=0.01,
            dimension=10,
            initialize_all=False,
        ))

        updater = rs.FactorModelGradientUpdater(**self.parameter_defaults(
            learning_rate=0.05, regularization_rate=0.0))
        updater.set_model(model)

        learner = rs.OfflineImplicitGradientLearner(
            **self.parameter_defaults(number_of_iterations=3,
                                      start_time=-1,
                                      period_length=86400,
                                      write_model=False,
                                      read_model=False,
                                      clear_model=False,
                                      learn=True,
                                      base_out_file_name="",
                                      base_in_file_name=""))
        learner.set_model(model)
        # learner.set_recommender_data_iterator(elems['recommender_data_iterator'])
        learner.add_gradient_updater(updater)

        negative_sample_generator = rs.UniformNegativeSampleGenerator(
            **self.parameter_defaults(
                negative_rate=0,
                initialize_all=False,
            ))
        # negative_sample_generator.set_train_matrix(elems['train_matrix'])
        # negative_sample_generator.set_items(elems['items'])
        learner.set_negative_sample_generator(negative_sample_generator)

        point_wise = rs.ObjectiveMSE()
        gradient_computer = rs.GradientComputerPointWise()
        gradient_computer.set_objective(point_wise)
        gradient_computer.set_model(model)
        learner.set_gradient_computer(gradient_computer)

        return {'config': config, 'model': model, 'learner': learner}
Example #30
0
    def _fit(self, recommender_data, users, items, matrix):
        model = rs.SvdppModel(**self.parameter_defaults(
            begin_min=self.parameter_default("begin_min", -0.01),
            begin_max=self.parameter_default("begin_max", 0.01),
            dimension=self.parameter_default("dimension", 10),
            use_sigmoid=False,
            norm_type="constant",
            gamma=1,
            user_vector_weight=0.5,
            history_weight=0.5))

        gradient_updater = rs.SvdppModelGradientUpdater(
            **self.parameter_defaults(
                learning_rate=0.05,
                cumulative_item_updates=False,
            ))
        gradient_updater.set_model(model)
        simple_updater = rs.SvdppModelUpdater()
        simple_updater.set_model(model)

        point_wise = rs.ObjectiveMSE()
        gradient_computer = rs.GradientComputerPointWise()
        gradient_computer.set_objective(point_wise)
        gradient_computer.set_model(model)
        gradient_computer.add_gradient_updater(gradient_updater)

        negative_sample_generator = rs.UniformNegativeSampleGenerator(
            **self.parameter_defaults(
                negative_rate=9, initialize_all=False, max_item=-1))
        negative_sample_generator.set_train_matrix(matrix)
        negative_sample_generator.set_items(items)
        negative_sample_generator.add_updater(gradient_computer)

        learner = rs.OfflineIteratingOnlineLearnerWrapper(
            **self.parameter_defaults(
                seed=254938879,
                number_of_iterations=20,
                shuffle=True,
            ))
        learner.add_early_updater(simple_updater)
        learner.add_iterate_updater(negative_sample_generator)

        return (model, learner)