Example #1
0
 def yyparse(self, lexfile):
     """
     Args:
         lexfile (str): Flex file to be parsed
     Returns:
         DFA: A dfa automaton
     """
     temp = tempfile.gettempdir()
     self.outfile = temp + '/' + ''.join(
         random.choice(string.ascii_uppercase + string.digits)
         for _ in range(5)) + '_lex.yy.c'
     self._create_automaton_from_regex(lexfile)
     states_num, delta = self._create_delta()
     states = self._create_states(states_num)
     accepted_states = self._read_accept_states()
     if self.alphabet != []:
         alphabet = self.alphabet
     else:
         alphabet = createalphabet()
     mma = DFA(alphabet)
     for state in states:
         if state != 0:
             for char in alphabet:
                 nextstate = delta(state, char)
                 mma.add_arc(state - 1, nextstate - 1, char)
             if state in accepted_states:
                 mma[state - 1].final = True
     if os.path.exists(self.outfile):
         os.remove(self.outfile)
     return mma
Example #2
0
def main():
    """
    Testing function for PDA - DFA Diff Operation
    """
    if len(argv) < 2:
        print 'Usage: '
        print '         Get A String              %s CFG_fileA FST_fileB' % argv[
            0]
        return

    alphabet = createalphabet()

    cfgtopda = CfgPDA(alphabet)
    print '* Parsing Grammar:',
    mma = cfgtopda.yyparse(argv[1])
    print 'OK'

    flex_a = Flexparser(alphabet)
    print '* Parsing Regex:',
    mmb = flex_a.yyparse(argv[2])
    print mmb
    print 'OK'
    print '* Minimize Automaton:',
    mmb.minimize()
    print 'OK'
    print mmb
    print '* Diff:',
    ops = PdaDiff(mma, mmb, alphabet)
    mmc = ops.diff()
    print 'OK'
    print '* Get String:',
    print ops.get_string()
Example #3
0
 def __init__(self, alphabet=createalphabet()):
     """
     Args:
         alphabet (list): pyfst input symbol list
     Returns:
         None
     """
     isyms = None
     self.alphabet = alphabet
     fst.StdAcceptor.__init__(self, isyms)
     num = 1
     for char in self.alphabet:
         self.isyms.__setitem__(char, num)
         num = num + 1
Example #4
0
 def __init__(self, alphabet=createalphabet()):
     """
     Args:
         alphabet (list): The imput alphabet
     Returns:
         None
     """
     self.states = []
     self.alphabet = alphabet
     self.nfa = False
     num = 1
     self.isyms = syms()
     self.osyms = syms()
     for char in alphabet + [EPSILON]:
         self.isyms.__setitem__(char, num)
         self.osyms.__setitem__(char, num)
         num = num + 1
    def __init__(self, input_fst_a, alphabet=None):
        """
        Args:
            input_fst_a (DFA): The DFA states
            alphabet (list): the input alphabet
        Returns:
            None
        """
        if alphabet is None:
            alphabet = createalphabet()
        self.mma = DFA(self.alphabet)
        self.mma.init_from_acceptor(input_fst_a)
        self.alphabet = alphabet

        self.l_transitions = {}
        self.epsilon = ''
        self.empty = None
Example #6
0
 def __init__(self, input_fst_a, alphabet=None):
     """
     Args:
         input_fst_a (DFA): The DFA states
         alphabet (list): the input alphabet
     Returns:
         None
     """
     if alphabet is None:
         alphabet = createalphabet()
     self.alphabet = alphabet
     self.mma = DFA(self.alphabet)
     self.mma.init_from_acceptor(input_fst_a)
     # a is a matrix that holds all transitions
     # If there is a transition from state 0 to state 1 with the symbol x
     # then a[0][1]=x
     self.A = {}
     # B[n] holds the regular expression that describes how a final state
     # can be reached from state n
     self.B = {}
     self.epsilon = ''
     self.empty = None
Example #7
0
 def __init__(self, alphabet=createalphabet()):
     """
     Args:
         alphabet (list): The imput alphabet
     Returns:
         None
     """
     self.automaton = fst.Fst()
     id = self.add_state()
     self.automaton.set_start(id)
     self.alphabet = alphabet
     num = 1
     self.isyms = syms()
     self.osyms = syms()
     insymbols = fst.SymbolTable()
     outsymbols = fst.SymbolTable()
     for char in alphabet:
         self.isyms.__setitem__(char, num)
         self.osyms.__setitem__(char, num)
         insymbols.add_symbol(char, num)
         outsymbols.add_symbol(char, num)
         num = num + 1
     self.automaton.set_input_symbols(insymbols)
     self.automaton.set_output_symbols(outsymbols)
Example #8
0
 def __init__(self, alphabet=createalphabet()):
     self.alphabet = alphabet
     super(DFA, self).__init__(alphabet)
Example #9
0
def main():
    """
    Function for PDA to CNF Operation
    :type argv: list
    :param argv: Parameters
    """
    if len(argv) < 3:
        print 'Usage for getting CFG: %s CFG_fileA CFG ' % argv[0]
        print 'Usage for getting STR: %s CFG_fileA STR ' \
              'Optimize[0 or 1] splitstring[0 or 1] ' % argv[0]
        print ''
        print 'For example: python pdacnf.py grammar.y STR 1 0'
        print '             python pdacnf.py grammar.y STR 1 1'
        print '             python pdacnf.py grammar.y CFG'
        return

    alphabet = createalphabet()

    mode = argv[2]

    optimized = 0
    splitstring = 0
    if mode == 'STR':
        optimized = int(argv[3])
        splitstring = int(argv[4])

    cfgtopda = CfgPDA(alphabet)
    print '* Parsing Grammar:',
    mma = cfgtopda.yyparse(argv[1])
    print 'OK'
    print ' - Total PDA states are ' + repr(len(mma.s))

    print '* Simplify State IDs:',
    simple_a = SimplifyStateIDs()
    mma.s, biggestid, newaccepted = simple_a.get(mma.s)
    if newaccepted:
        print 'OK'
    else:
        print 'OK'

    print '* Eliminate READ states:',
    replace = ReadReplace(mma.s, biggestid)
    mma.s = replace.replace_read()
    print 'OK'
    print ' - Total PDA states now are ' + repr(len(mma.s))
    maxstate = replace.nextstate() - 1

    print '* Reduce PDA:',
    simple_b = ReducePDA()
    mma.s = simple_b.get(mma.s)
    print 'OK'
    print ' - Total PDA states now are ' + repr(len(mma.s))

    print '* PDA to CFG transformation:',
    cnfgenerator = PdaCnf(mma.s)
    grammar = cnfgenerator.get_rules(optimized)
    print 'OK'
    print ' - Total CFG rules generated: ' + repr(len(grammar))

    if mode == 'STR':
        gen = CFGGenerator(CNFGenerator(grammar),
                           optimized=optimized,
                           splitstring=splitstring,
                           maxstate=maxstate)
        print gen.generate()
    else:
        print grammar