Example #1
0
def benchmark_build_linear(n_samples: int, n_risks: int, n_loop: int) -> None:
    print("-" * 60)
    print("Starting portfolio construction by linear programming")
    print("Parameters(n_samples: {0}, n_risks: {1}, n_loop: {2})".format(
        n_samples, n_risks, n_loop))

    er = np.random.randn(n_samples)
    risk_exp = np.random.randn(n_samples, n_risks)
    bm = np.random.rand(n_samples)
    bm /= bm.sum()

    lbound = -0.04
    ubound = 0.05

    risk_lbound = bm @ risk_exp
    risk_ubound = bm @ risk_exp

    start = dt.datetime.now()
    for _ in range(n_loop):
        status, v, x = linear_builder(er,
                                      lbound,
                                      ubound,
                                      risk_exp,
                                      risk_target=(risk_lbound, risk_ubound))
    impl_model_time = dt.datetime.now() - start
    print('{0:20s}: {1}'.format('Implemented model (ECOS)', impl_model_time))

    c = -er
    bounds = [(lbound, ubound) for _ in range(n_samples)]
    a_eq = np.ones((1, n_samples))
    a_eq = np.vstack((a_eq, risk_exp.T))
    b_eq = np.hstack((np.array([1.]), risk_exp.T @ bm))
    start = dt.datetime.now()
    for _ in range(n_loop):
        res = linprog(c,
                      A_eq=a_eq,
                      b_eq=b_eq,
                      bounds=bounds,
                      options={'maxiter': 10000})
    benchmark_model_time = dt.datetime.now() - start
    print('{0:20s}: {1}'.format('Benchmark model (scipy)',
                                benchmark_model_time))
    np.testing.assert_array_almost_equal(x, res['x'])

    c = matrix(-er)
    aneq = matrix(a_eq)
    b = matrix(b_eq)
    g = matrix(
        np.vstack((np.diag(np.ones(n_samples)), -np.diag(np.ones(n_samples)))))
    h = matrix(
        np.hstack((ubound * np.ones(n_samples), -lbound * np.ones(n_samples))))

    solvers.lp(c, g, h, solver='glpk')
    start = dt.datetime.now()
    for _ in range(n_loop):
        res2 = solvers.lp(c, g, h, aneq, b, solver='glpk')
    benchmark_model_time = dt.datetime.now() - start
    print('{0:20s}: {1}'.format('Benchmark model (glpk)',
                                benchmark_model_time))
    np.testing.assert_array_almost_equal(x, np.array(res2['x']).flatten())
Example #2
0
    def test_linear_build_with_to_constraint(self):
        bm = self.bm / self.bm.sum()
        eplson = 1e-6
        turn_over_target = 0.1

        risk_lbound = bm @ self.risk_exp
        risk_ubound = bm @ self.risk_exp

        risk_tolerance = 0.01 * np.abs(risk_lbound[:-1])

        risk_lbound[:-1] = risk_lbound[:-1] - risk_tolerance
        risk_ubound[:-1] = risk_ubound[:-1] + risk_tolerance

        status, _, w = linear_builder(self.er,
                                      0.,
                                      0.01,
                                      self.risk_exp,
                                      risk_target=(risk_lbound, risk_ubound),
                                      turn_over_target=turn_over_target,
                                      current_position=self.current_pos)
        self.assertEqual(status, 'optimal')
        self.assertAlmostEqual(np.sum(w), 1.)
        self.assertTrue(np.all(w <= 0.01 + eplson))
        self.assertTrue(np.all(w >= -eplson))
        self.assertAlmostEqual(
            np.abs(w - self.current_pos).sum(), turn_over_target)

        calc_risk = (w - bm) @ self.risk_exp / np.abs(bm @ self.risk_exp)
        self.assertTrue(np.all(np.abs(calc_risk) <= 1.0001e-2))
Example #3
0
    def test_linear_build(self):
        bm = self.bm / self.bm.sum()
        eplson = 1e-6

        status, _, w = linear_builder(self.er, 0., 0.01, self.risk_exp,
                                      (bm @ self.risk_exp, bm @ self.risk_exp))
        self.assertEqual(status, 'optimal')
        self.assertAlmostEqual(np.sum(w), 1.)
        self.assertTrue(np.all(w <= 0.01 + eplson))
        self.assertTrue(np.all(w >= -eplson))

        calc_risk = (w - bm) @ self.risk_exp
        expected_risk = np.zeros(self.risk_exp.shape[1])
        np.testing.assert_array_almost_equal(calc_risk, expected_risk)
Example #4
0
    def test_linear_build_with_inequality_constraints(self):
        bm = self.bm / self.bm.sum()
        eplson = 1e-6

        risk_lbound = bm @ self.risk_exp
        risk_ubound = bm @ self.risk_exp

        risk_tolerance = 0.01 * np.abs(risk_lbound[:-1])

        risk_lbound[:-1] = risk_lbound[:-1] - risk_tolerance
        risk_ubound[:-1] = risk_ubound[:-1] + risk_tolerance

        status, _, w = linear_builder(self.er,
                                      0.,
                                      0.01,
                                      self.risk_exp,
                                      risk_target=(risk_lbound, risk_ubound))
        self.assertEqual(status, 'optimal')
        self.assertAlmostEqual(np.sum(w), 1.)
        self.assertTrue(np.all(w <= 0.01 + eplson))
        self.assertTrue(np.all(w >= -eplson))

        calc_risk = (w - bm) @ self.risk_exp / np.abs(bm @ self.risk_exp)
        self.assertTrue(np.all(np.abs(calc_risk) <= 1.01e-2))
Example #5
0
def er_portfolio_analysis(
        er: np.ndarray,
        industry: np.ndarray,
        dx_return: np.ndarray,
        constraints: Optional[Union[LinearConstraints, Constraints]] = None,
        detail_analysis=True,
        benchmark: Optional[np.ndarray] = None,
        is_tradable: Optional[np.ndarray] = None,
        method='risk_neutral',
        **kwargs) -> Tuple[pd.DataFrame, Optional[pd.DataFrame]]:
    er = er.flatten()

    def create_constraints(benchmark, **kwargs):
        if 'lbound' in kwargs:
            lbound = kwargs['lbound'].copy()
            del kwargs['lbound']
        else:
            lbound = np.maximum(0., benchmark - 0.01)

        if 'ubound' in kwargs:
            ubound = kwargs['ubound'].copy()
            del kwargs['ubound']
        else:
            ubound = 0.01 + benchmark
        if is_tradable is not None:
            ubound[~is_tradable] = np.minimum(lbound, ubound)[~is_tradable]

        risk_lbound, risk_ubound = constraints.risk_targets()
        cons_exp = constraints.risk_exp
        return lbound, ubound, cons_exp, risk_lbound, risk_ubound

    if method == 'risk_neutral':
        lbound, ubound, cons_exp, risk_lbound, risk_ubound = create_constraints(
            benchmark, **kwargs)

        turn_over_target = kwargs.get('turn_over_target')
        current_position = kwargs.get('current_position')

        status, _, weights = linear_builder(er,
                                            risk_constraints=cons_exp,
                                            lbound=lbound,
                                            ubound=ubound,
                                            risk_target=(risk_lbound,
                                                         risk_ubound),
                                            turn_over_target=turn_over_target,
                                            current_position=current_position)
        if status != 'optimal':
            raise ValueError(
                'linear programming optimizer in status: {0}'.format(status))

    elif method == 'rank':
        weights = rank_build(
            er, use_rank=kwargs['use_rank'],
            masks=is_tradable).flatten() * benchmark.sum() / kwargs['use_rank']
    elif method == 'ls' or method == 'long_short':
        weights = long_short_builder(er).flatten()
    elif method == 'mv' or method == 'mean_variance':
        lbound, ubound, cons_exp, risk_lbound, risk_ubound = create_constraints(
            benchmark, **kwargs)
        cov = kwargs['cov']

        if 'lam' in kwargs:
            lam = kwargs['lam']
        else:
            lam = 1.

        status, _, weights = mean_variance_builder(er,
                                                   cov=cov,
                                                   bm=benchmark,
                                                   lbound=lbound,
                                                   ubound=ubound,
                                                   risk_exposure=cons_exp,
                                                   risk_target=(risk_lbound,
                                                                risk_ubound),
                                                   lam=lam)
        if status != 'optimal':
            raise ValueError(
                'mean variance optimizer in status: {0}'.format(status))

    elif method == 'tv' or method == 'target_vol':
        lbound, ubound, cons_exp, risk_lbound, risk_ubound = create_constraints(
            benchmark, **kwargs)
        cov = kwargs['cov']

        if 'target_vol' in kwargs:
            target_vol = kwargs['target_vol']
        else:
            target_vol = 1.

        status, _, weights = target_vol_builder(er,
                                                cov=cov,
                                                bm=benchmark,
                                                lbound=lbound,
                                                ubound=ubound,
                                                risk_exposure=cons_exp,
                                                risk_target=(risk_lbound,
                                                             risk_ubound),
                                                vol_low=0,
                                                vol_high=target_vol)
    else:
        raise ValueError("Unknown building type ({0})".format(method))

    if detail_analysis:
        analysis = simple_settle(weights, dx_return, industry, benchmark)
    else:
        analysis = None
    return pd.DataFrame({'weight': weights,
                         'industry': industry,
                         'er': er}), \
           analysis