Example #1
0
def barplot(
    x=None, y=None, hue=None, data=None,
    estimator=np.mean, ci=95, size=None, aspect=1,
    orient=None, color=None, palette=None, saturation=.75, dodge=True
):
    xs, ys = "x", "y"
    orient = infer_orient(data[x], data[y], orient)
    if orient == "h":
        x, y = y, x
        xs, ys = ys, xs

    estimator = _validate_estimator(estimator, ci)

    encodings = _bar_encodings(x, y, xs, ys, hue, dodge, estimator)
    chart = alt.Chart(data).mark_bar().encode(**encodings)

    if ci:
        ci_encodings = _bar_ci_encodings(x, y, xs, ys, hue, dodge, estimator)
        ci_layer = alt.Chart().mark_rule().encode(**ci_encodings)
        chart.data = alt.Undefined
        chart = alt.LayerChart(data=data, layer=[chart, ci_layer])

    if hue and dodge:
        facet_dir = "column" if orient == "v" else "row"
        chart = chart.facet(**{facet_dir: "%s:N" % x})

    size_chart(chart, size, aspect)

    pal = vega_palette(palette, color, saturation)
    return chart.configure_range(category=pal)
Example #2
0
def pointplot(
    x=None, y=None, hue=None, data=None,
    estimator=np.mean, ci=95, join=True, size=None, aspect=1,
    orient=None, color=None, palette=None, saturation=.75
):
    xs, ys = "x", "y"
    orient = infer_orient(data[x], data[y], orient)
    if orient == "h":
        x, y = y, x
        xs, ys = ys, xs

    estimator = _validate_estimator(estimator, ci)

    encodings = _point_encodings(x, y, xs, ys, hue, estimator)
    chart = alt.Chart(data).mark_circle().encode(**encodings)
    layers = [chart]

    if join:
        layers.append(alt.Chart().mark_line().encode(**encodings))

    if ci:
        ci_encodings = _point_ci_encodings(x, y, xs, ys, hue, estimator)
        cfield = hue if hue else "___"
        ci_encodings["color"] = alt.Color(field=cfield, type="nominal", legend=None)
        layers.append(alt.Chart().mark_rule().encode(**ci_encodings))

    if len(layers) > 1:
        chart.data = alt.Undefined
        chart = alt.LayerChart(data=data, layer=layers)

    size_chart(chart, size, aspect)

    pal = vega_palette(palette, color, saturation)
    return chart.configure_range(category=pal)
Example #3
0
def graphPayouts(sim):
    #Make a version of this with pops
    aggRecord = sim["aggRecord"][['LPayoff', 'HPayoff']].copy()
    meltedAgg = aggRecord.assign(round= aggRecord.index).melt(id_vars="round")
    display(alt.LayerChart(meltedAgg).encode(
            x='round',
            y='value:Q',
            color='variable:N'
        ).add_layers(
            alt.Chart().mark_point(),
            alt.Chart().mark_line()
        ))
Example #4
0
def graphPayoutsJustGraph(sim):
    #Make a version of this with pops
    aggRecord = sim["aggRecord"][['LPayoff', 'HPayoff']].copy()
    meltedAgg = aggRecord.assign(round= aggRecord.index).melt(id_vars="round")
    return alt.LayerChart(meltedAgg).encode(
            x='round',
            y='value:Q',
            color=alt.Color('variable:N', legend=alt.Legend(title="Payout", orient="left"))
        ).add_layers(
            alt.Chart().mark_point(),
            alt.Chart().mark_line()
        ).properties(
    width=700, 
    height = 180)
Example #5
0
def to_chart(G, pos):
    """Construct a single Altair Chart for
    """
    # Build node layer
    node_df = to_pandas_nodes(G, pos)
    node_layer = alt.Chart(node_df)

    # Build edge layer
    edge_df = to_pandas_edges(G, pos)
    edge_layer = alt.Chart(edge_df)

    # Layer chart
    chart = alt.LayerChart(layer=(edge_layer, node_layer))
    chart = despine(chart)
    return chart
Example #6
0
def plotStrategyWealthOverTime(sim):
    simRecord = sim["balanceRecord"].copy()
    simRecord["Strategy"] = sim["finalScores"]["Strategy"]
    wideScores = (simRecord
     .groupby("Strategy")[simRecord.columns[:-1]]
     .mean()
     .transpose()
     .assign(round= range(101))
     .melt(id_vars="round"))
    
    display(alt.LayerChart(wideScores).encode(
        x='round',
        y='value:Q',
        color=alt.Color('Strategy:N', legend=alt.Legend(title="Payout", orient="left"))
    ).add_layers(
        alt.Chart().mark_point(),
        alt.Chart().mark_line()
    ).properties(
    width=700, 
    height = 180))
Example #7
0
def daily():

    # data
    ldn = pd.read_csv('../data/output/ml_general.csv')[::-1][35:]
    ldn = ldn.rename(columns={'London': 'new', 'London_7': 'avg'})

    # getting date and new cases
    today = pd.to_datetime(ldn.iloc[-1].date).strftime('%b %d')
    cases = int(ldn.iloc[-1].new)

    # avg line
    avg = alt.Chart(ldn).mark_line(strokeWidth=2.5,
                                   color='#27516B').encode(x='date:T',
                                                           y='avg:Q')

    # daily feather
    new = alt.Chart(ldn).mark_line(opacity=0.35, strokeDash=[1, 1]).encode(
        x='date:T',
        y=alt.Y('new:Q', scale=alt.Scale(domain=[0, int(ldn.new.max())])))

    # final datum dot
    dot = alt.Chart(ldn).mark_circle(size=5, opacity=0.8).encode(
        x='date:T',
        y=alt.Y('new:Q', scale=alt.Scale(domain=[0, int(ldn.new.max())])))

    # combined
    d = alt.LayerChart(layer=[new, avg, dot]).properties(
        width=375,
        height=375
        # title = {
        #     'text': '15 new cases',
        #     'subtitle': 'new cases with 7-day average'
        # }
    )

    return d, today, cases
Example #8
0
"""
Multiple Marks
==============
This example demonstrates creating a single chart with multiple markers
representing the same data.
"""
import altair as alt
from vega_datasets import data

stocks = data.stocks()

alt.LayerChart(stocks).encode(x='date:T', y='price:Q',
                              color='symbol:N').add_layers(
                                  alt.Chart().mark_point(),
                                  alt.Chart().mark_line())
Example #9
0
"""
Ranged Dot Plot
-----------------
This example shows a ranged dot plot that uses 'layer' to convey changing life expectancy for the five most populous countries (between 1955 and 2000).
"""

import altair as alt
from vega_datasets import data

chart = alt.LayerChart(data=data.countries.url).transform_filter(
    filter={
        "field": 'country',
        "oneOf": ["China", "India", "United States", "Indonesia", "Brazil"]
    }).transform_filter(filter={
        'field': 'year',
        "oneOf": [1955, 2000]
    })

chart += alt.Chart().mark_line(color='#db646f').encode(x='life_expect:Q',
                                                       y='country:N',
                                                       detail='country:N')
# Add points for life expectancy in 1955 & 2000
chart += alt.Chart().mark_point(size=100, opacity=1, filled=True).encode(
    x='life_expect:Q',
    y='country:N',
    color=alt.Color('year:O',
                    scale=alt.Scale(domain=['1955', '2000'],
                                    range=['#e6959c',
                                           '#911a24']))).interactive()
Example #10
0
    def create_scatter(self, name='chart.html'):
        """
        :param name: str
            name of the output file
        """
        case_a = self.case_a
        case_b = self.case_b

        # add regression layer, True by default
        regression_layer = self.chart + self.chart.transform_regression(
            case_a, case_b).mark_line(color='black')
        # nearest will popup data of the nearest point
        nearest = alt.selection(type='single',
                                nearest=True,
                                on='mouseover',
                                fields=['x'],
                                empty='none')

        text = alt.Chart(self.corona_df).mark_text(
            align='left',
            baseline='middle',
            color='black',
            dy=-9,
            dx=-7,
            fontSize=15,
        ).encode(text='text_popup',
                 tooltip=[alt.Tooltip('location:N', title='Country')] + [
                     alt.Tooltip(case_a, type='quantitative', title=case_a),
                     alt.Tooltip(case_b, type='quantitative', title=case_b)
                 ],
                 x=f'{case_a}:Q',
                 y=f'{case_b}:Q').add_selection(nearest)
        text_layer = self.chart + text

        line = self.chart + alt.Chart(self.corona_df).mark_rule(
            color='red', strokeWidth=2).encode(y='medianY:Q') + alt.Chart(
                self.corona_df).mark_rule(color='red',
                                          strokeWidth=2).encode(x='medianX:Q')

        # add layers to the map
        layers = [line, regression_layer, text_layer]

        chart = alt.LayerChart(self.corona_df, layers)

        chart = chart.add_selection(self.selection).transform_filter(
            self.selection
        ).properties(
            width=490,
            height=395,
            padding=40
            # interactive to add interaction to the plot
            # Cant work on Android
        ).interactive()

        # save here
        dir = 'corona_full/templates/charts/'
        location = dir + name
        # renderer svg is a bit faster
        chart.save(location, embed_options={'renderer': 'svg'})

        # update created HTML page
        new_style = '''
       <script>
const msPerDay = 24 * 60 * 60 * 1000;
const date = new Date('December 31, 2019').getTime()

function toDateTime(x) {
// transform ms to date
	let new_date = new Date(x * msPerDay + date);
	return new_date.toLocaleDateString();

}

function Init () {
      // Launch in start - attach event to the only input
      var target = document.getElementsByTagName("input")[0];
			if (target.addEventListener) {
				target.addEventListener("input", updateTextInput, false);
			} else if (target.attachEvent) {
				target.attachEvent("oninout", updateTextInput);
			} else {
				target["oninput"] = updateTextInput;
			}
  }


function getTexts() {
    let g_el = document.getElementsByClassName('mark-text role-mark layer_2_layer_1_marks')[0]
    let iso_code = parent.document.getElementsByName('iso_code');
    let checked = []

    for (let i = 0; i<iso_code.length;i++) {
    if (iso_code[i].checked) {checked.push(iso_code[i].value)}
         }
    var texts = g_el.getElementsByTagName('text');
    return [texts, checked]
}

function clearIso() {
    a =  getTexts()
    let texts = a[0]
    let checked = a[1]
    for (let i=0; i<texts.length; i++) {
      if (checked.includes(texts[i].innerHTML)) {
        texts[i].style.display = 'block'
        }

        else {
            texts[i].style.display = 'none'
          }
        }
}

async function updateTextInput(val) {
      // Show date of showed data on page
      // base day is 31.12.2019
      var x = document.getElementsByClassName("vega-bind-name")[0]
		  val = document.getElementsByTagName("input")[0].value
		  val = toDateTime(val);
		  x.innerHTML = val;
      //console.log('UpdateTextInput', getTexts()[0][0], getTexts()[0][0].style)
      await sleep(1)

      clearIso()
}

window.onload = function() {
  // Hide iso codes text: needed by default
  clearIso()
  Init();
  // attach some buttons
  var divv = document.createElement("div");

  // next day
  a= createfn('+', plus)
  // auto scroll
  b = createfn('auto', changeAuto)
  // prev day
  c = createfn('-', minus)

  divv.appendChild(c);
  divv.appendChild(b);
  divv.appendChild(a);
  divv.classList.add('button-div');
  document.getElementsByTagName('body')[0].appendChild(divv);
    // let inputElement = document.getElementsByTagName("input")[0]
    // attach one more event to input, clearIso() on change
    // inputElement.addEventListener("input", clearIso, false);
    // inputElement.addEventListener("change", clearIso, false);

}
function plus(){
    let inputElement = document.getElementsByTagName("input")[0]
    inputElement.value++;
		inputElement.dispatchEvent(new Event('input'))
// await sleep(.01)
// clearIso();

}

function minus(){
	let inputElement = document.getElementsByTagName("input")[0]
	inputElement.value--;
	inputElement.dispatchEvent(new Event('input'))
}

function sleep(ms) {
  return new Promise(
    resolve => setTimeout(resolve, ms)
  );
}

run = false
async function changeAuto() {
  // change showed day
	run = !run
	var ele = document.getElementsByTagName('input')[0];
	if (ele.value === ele.max && run) {
		ele.value = 0;
	}
	do {
    plus();
    // wait half sec
		await sleep(499);
	}
	while (run);
}

function createfn(sign, operation){
    // create a button with a function on click
    var element = document.createElement("button");
    var para = document.createTextNode(sign);
    element.appendChild(para);
  	element.addEventListener("click", operation, false);
    return element
}

</script>

<style>
input {
width: 95%;
}

span {
display: none;
}

span[class] {
display: inline;
}
.vega-bind-name {
visibility: visible;
}

.vega-bind {
	text-align: center;
	paddin-left: 2%;
	padding-right: 3%;
}

.button-div {
  display: table;
  margin-right: auto;
  margin-left: auto;

 }
 '''  # NO ENDING STYLE TAG !!!
        with open(location, 'r', encoding='utf-8') as fr:
            data = fr.read()

        current_day = max(self.corona_df_full['date'])
        data = data.replace('<style>', new_style).replace('Date:', current_day)
        # write new styles and JS to the sasme document
        with open(location, 'w', encoding='utf-8') as fw:
            fw.write(data)
Example #11
0
 def __init__(self):
     self.chart = alt.LayerChart()
Example #12
0
def regplot(
    x, y, data=None, x_estimator=None, x_bins=None, x_ci="ci",
    x_range=None, y_range=None, truncate=False,
    scatter=True, fit_reg=True, ci=95, n_boot=1000, units=None,
    order=1, logistic=False, lowess=False, robust=False, logx=False,
    color=None, scatter_kws={}, line_kws={}, ax=None,
    palette=None, height=None, aspect=1, color_scale=None
):

    if data is None:
        data, names = build_dataframe({"x": x, "y": y})
        x, y = names["x"], names["y"]

    if x_range is None:
        x_raw_range = (data[x].min(), data[x].max())
        x_pad = 0.05*(x_raw_range[1] - x_raw_range[0])
        x_range = (x_raw_range[0] - x_pad, x_raw_range[1] + x_pad)

    def plot_regression(data, color):
        p = sns.regression._RegressionPlotter(
            data[x], data[y], x_estimator=x_estimator, x_bins=x_bins, x_ci=x_ci,
            n_boot=n_boot, units=units, ci=ci, truncate=truncate,
            order=order, logistic=logistic, lowess=lowess, robust=robust, logx=logx
        )

        layers = []
        grid, yhat, err_bands = p.fit_regression(x_range=x_range)
        layers.append(plot(grid, yhat, color=color, **line_kws))
        if err_bands is not None:
            area = fill_between(grid, *err_bands, color=color)
            area.encoding.opacity = alt.value(0.15)
            layers.append(area)
        return layers

    def plot_scatter(data, color):
        p = sns.regression._RegressionPlotter(
            data[x], data[y], x_estimator=x_estimator, x_bins=x_bins, x_ci=x_ci,
            n_boot=n_boot, units=units, ci=ci, truncate=truncate,
            order=order, logistic=logistic, lowess=lowess, robust=robust, logx=logx
        )

        layers = []
        if p.x_estimator is None:
            layers.append(pscatter(x, y, data=data, color=color, **scatter_kws))
        else:
            xs, ys, cis = p.estimate_data
            if [ci for ci in cis if ci is not None]:
                for xval, cci in zip(xs, cis):
                    ci_df = pd.DataFrame({x: [xval, xval], y: cci})
                    layers.append(plot(x, y, data=ci_df))
            estimate_df = pd.DataFrame({x: xs, y: ys})
            layers.append(pscatter(x, y, data=estimate_df, color=color, **scatter_kws))
        return layers

    if color and color in list(data.columns):
        if color_scale is None:
            val = data[color].unique()
            pal = sns.color_palette(palette)
            color_scale = alt.Scale(domain=list(val), range=vega_palette(pal))
        else:
            val = color_scale.domain

        color_map = {}
        for i in range(len(color_scale.domain)):
            color_map[color_scale.domain[i]] = color_scale.range[i % len(color_scale.range)]

        layers = []
        if scatter:
            for v in data[color].unique():
                part = data.loc[data[color] == v]
                layers += plot_scatter(part, color_map[v])

        if fit_reg:
            for v in data[color].unique():
                part = data.loc[data[color] == v]
                layers += plot_regression(part, color_map[v])
    else:
        layers = []
        if scatter:
            layers += plot_scatter(data, color)

        if fit_reg:
            layers += plot_regression(data, color)

    for layer in layers:
        if isinstance(layer.mark, six.string_types):
            layer.mark = dict(type=layer.mark, clip=True)
        else:
            layer.mark.clip = True
        layer.encoding.x.scale=alt.Scale(domain=x_range, nice=False)
        if y_range is not None:
            layer.encoding.y.scale=alt.Scale(domain=y_range, nice=False)
        layer.config = alt.Undefined

    chart = alt.LayerChart(layer=layers)
    return chart
Example #13
0
def Plots(result, nth, w, h):
    # This allows for data greater than 5000 rows to be plotted
    alt.data_transformers.disable_max_rows()

    x, y17, y17w, y17b, y18, y40, y40b = (result[4], result[5], result[6],
                                          result[7], result[8], result[9],
                                          result[10])
    TPDsi, TPDei, Arsi, Arei = (result[14], result[15], result[16], result[17])
    wf, watstart, watend, ratio1718 = (result[18], result[11], result[12],
                                       result[13])

    temp = list(x[TPDsi:TPDei])
    temp = temp - temp[0]
    temp = 323 + temp * 10
    temp = list(temp[0::nth])

    # cut out and keep every nth point
    # Raw data Cuts
    xr = list(x[0::nth])
    y17r = list(y17[0::nth])
    y18r = list(y18[0::nth])
    y40r = list(y40[0::nth])

    # TPDsi:TPDei cuts
    xt = (list(x[TPDsi:TPDei]))[0::nth]
    y17t = (list(y17[TPDsi:TPDei]))[0::nth]
    y17wt = (list(y17w[TPDsi:TPDei]))[0::nth]
    y17bt = (list(y17b[TPDsi:TPDei]))[0::nth]
    y18t = (list(y18[TPDsi:TPDei]))[0::nth]

    # Ar cuts
    xa = (list(x[Arsi:Arei]))[0::nth]
    y40a = (list(y40[Arsi:Arei]))[0::nth]
    y40ba = (list(y40b[Arsi:Arei]))[0::nth]

    raw_data = pd.DataFrame({'x': xr, 'y17': y17r, 'y18': y18r, 'y40': y40r})
    raw_reshape = pd.melt(raw_data,
                          id_vars=['x'],
                          value_vars=['y17', 'y18', 'y40'],
                          var_name='legend',
                          value_name='y')
    raw_chart = alt.Chart(raw_reshape).mark_line(size=3).encode(
        alt.X('x', axis=alt.Axis(tickCount=7, title='Time (min)')),
        alt.Y('y', axis=alt.Axis(tickCount=7, title='Intensity (counts)')),
        alt.Color('legend', legend=alt.Legend(
            orient='top-left'))).configure_axis(grid=False).properties(
                width=w, height=h, title='Raw Data from CSV').interactive()

    TPD_data = pd.DataFrame({
        'x': xt,
        'y17': y17t,
        'y17 water corrected': y17wt,
        'y17 baseline corrected': y17bt,
        'y18': y18t
    })
    TPD_reshape = pd.melt(TPD_data,
                          id_vars=['x'],
                          value_vars=[
                              'y17', 'y17 water corrected',
                              'y17 baseline corrected', 'y18'
                          ],
                          var_name='legend',
                          value_name='y')
    TPD_chart = alt.Chart(TPD_reshape).mark_line(size=3).encode(
        alt.X('x', axis=alt.Axis(title='Time (min)')),
        alt.Y('y', axis=alt.Axis(title='Intensity (counts)')),
        alt.Color('legend', legend=alt.Legend(
            orient='top-right'))).configure_axis(grid=False).properties(
                width=w,
                height=h,
                title='TPD: y17 Water and Baseline Correction ')

    Ar_data = pd.DataFrame({
        'x': xa,
        'y40': y40a,
        'y40 baseline corrected': y40ba
    })
    Ar_reshape = pd.melt(Ar_data,
                         id_vars=['x'],
                         value_vars=['y40', 'y40 baseline corrected'],
                         var_name='legend',
                         value_name='y')
    Ar_chart = alt.Chart(Ar_reshape).mark_line(size=3).encode(
        alt.X('x', axis=alt.Axis(title='Time (min)')),
        alt.Y('y', axis=alt.Axis(title='Intensity (counts)')),
        alt.Color('legend',
                  legend=alt.Legend(orient='top-right'))).configure_axis(
                      grid=False).properties(width=w,
                                             height=h,
                                             title='Ar Pulse')

    T_data = pd.DataFrame({'T': temp, 'y': y17bt})
    T_chart = alt.Chart(T_data).mark_line(size=3).encode(
        alt.X('T', axis=alt.Axis(title='Temp (K)')),
        alt.Y('y', axis=alt.Axis(title='Intensity (counts)')),
    ).configure_axis(grid=False).properties(
        width=w, height=h, title='TPD as a Function of Temperature')

    if wf == 1:
        W_data = pd.DataFrame({'x': x[watstart:watend], 'y': ratio1718})
        W_chart = alt.Chart(W_data).mark_line(size=3).encode(
            alt.X('x', axis=alt.Axis(title='Time (min)')),
            alt.Y('y', axis=alt.Axis(title='Value of y17/y18 Preceeding TPD')),
        ).configure_axis(grid=False).properties(
            width=w, height=h, title='Water Correction Factor')
    else:
        W_chart = alt.LayerChart()

    return (raw_chart, TPD_chart, Ar_chart, T_chart, W_chart)
Example #14
0
def create_graph():
    # retira o número máximo de linhas para pot com Altair
    alt.data_transformers.disable_max_rows()
    
    # faz query no banco de dados
    autores = queryDB('author', ['ID_author','author'])
    artigos = queryDB('paper', ['ID_paper','paper'])
    author_paper = queryDB('author_paper', ['ID_paper','ID_author'])
    
    autores['ID_author'] = autores['ID_author'].astype(str)
    artigos['ID_paper'] = artigos['ID_paper'].astype(str)

    ### renderiza os gráficos
    
    ## Grafo 1 - Autores (authors)
    
    print('Preparando grafo dos autores...')
    graph = nx.Graph()
    
    # dataframe com colunas: paper e [lista_autores]
    group = pd.DataFrame(author_paper.groupby('ID_paper')['ID_author'].apply(list))
    
    
    # Adicionando "edges"
    for j,row in group.iterrows():
        i=len(row['ID_author'])
        for i in range(len(row['ID_author'])):
            for k in range(i,len(row['ID_author'])):
                graph.add_edge(row['ID_author'][i], row['ID_author'][k])
                
    pos = nx.spring_layout(graph,k=0.2, iterations=50, weight=0.1, center=(0.5,0.5)) # forces graph layout
    
    # coletando nodes
    nodes = to_pandas_nodes(graph,pos)
    nodes.reset_index(inplace=True)
    nodes.rename(columns={'index':'ID_author'}, inplace=True)
    nodes = pd.merge(nodes,autores,on='ID_author')  # coletando nome dos autores
    nodes = pd.merge(nodes,author_paper, on='ID_author')  # coletando ID_paper
    
    # coletando edges
    edges = to_pandas_edges(graph,pos)
    
    
    
    # Gráfico 1
    print('Criando interatividade com o Altair (autores) ...')
    
    selector = alt.selection_single(empty='all',fields=['ID_author']) # iniciando seletor
    
    points = alt.Chart(nodes).add_selection(selector).mark_point(filled=True,size=90).encode(
                alt.X('x', axis=alt.Axis(title='')),
                alt.Y('y', axis=alt.Axis(title='')),
                tooltip='author',
                opacity=alt.condition(selector,alt.value(0.95),alt.value(0.4),legend=None),
                color=alt.condition(selector, 'ID_author', alt.value('lightgray'), legend=None)
            ).properties( selection=selector ).transform_filter(selector)

    # cria um background para efeitos de transição do seletor
    bk = alt.Chart(nodes).mark_point(color='lightgray',filled=True,size=90).encode(
                alt.X('x', axis=alt.Axis(title='')),
                alt.Y('y', axis=alt.Axis(title='')),
                tooltip='author',
                opacity=alt.value(0.4),
    )

    lines = alt.Chart(edges).mark_line(color='salmon').encode(
                alt.X('x', axis=alt.Axis(title='')),
                alt.Y('y', axis=alt.Axis(title='')),
                detail='edge',
                opacity=alt.value(0.15)
            )

    chart = alt.LayerChart(layer=(lines,bk+points)).properties(
                height=350,
                width=450
                ).interactive()
    
    
    
    
    ## Grafo 2 - Artigos (papers)
    print('Preparando grafo dos artigos...')

    graph1 = nx.Graph()
    group1 = pd.DataFrame(author_paper.groupby('ID_author')['ID_paper'].apply(list))
    
    # Adicionando "edges"
    for j,row in group1.iterrows():
        i=len(row['ID_paper'])
        for i in range(len(row['ID_paper'])):
            for k in range(i,len(row['ID_paper'])):
                graph1.add_edge(row['ID_paper'][i], row['ID_paper'][k])
                
    pos1 = nx.spring_layout(graph1,k=0.2, iterations=50, weight=0.1, center=(0.5,0.5))  # forces graph layout
    
    # coletando nodes
    nodes1 = to_pandas_nodes(graph1, pos1)
    nodes1.reset_index(inplace=True)
    nodes1.rename(columns={'index':'ID_paper'}, inplace=True)
    nodes1 = pd.merge(nodes1,artigos,on='ID_paper')  # coletando nome dos papers
    nodes1 = pd.merge(nodes1,author_paper,on='ID_paper')  # coletando ID_author
    
    # coletando edges
    edges1 = to_pandas_edges(graph1,pos1)
    
    
    
    # Gráfico 2
    print('Criando interatividade com o Altair (artigos)...')

    points1 = alt.Chart(nodes1).add_selection(selector).mark_point(filled=True,size=90).encode(
                alt.X('x', axis=alt.Axis(title='')),
                alt.Y('y', axis=alt.Axis(title='')),
                tooltip='paper',
                opacity=alt.condition(selector,alt.value(0.95),alt.value(0.4),legend=None),
                color=alt.condition(selector, 'ID_author', alt.value('lightgray'), legend=None)
    ).transform_filter(selector)

    # cria um background para efeitos de transição do seletor
    bk1 = alt.Chart(nodes1).mark_point(color='lightgray',filled=True,size=90).encode(
                alt.X('x', axis=alt.Axis(title='')),
                alt.Y('y', axis=alt.Axis(title='')),
                tooltip='paper',
                opacity=alt.value(0.4),
    )

    lines1 = alt.Chart(edges1).mark_line(color='lightblue').encode(
                alt.X('x', axis=alt.Axis(title='')),
                alt.Y('y', axis=alt.Axis(title='')),
                detail='edge',
                opacity=alt.value(0.2)
    )

    chart1 = alt.LayerChart(layer=(lines1,bk1 + points1)).properties(
                height=350,
                width=450
                ).interactive()

    
    
    ### Concatenando horizontamnete os gráficos 1 e 2
    horiz_chart = alt.hconcat(chart, chart1 ).configure_axis( ticks=False,
                grid=False,
                domain=False,
                labels=False).configure_view(
                strokeWidth=0   
            )


    return horiz_chart.to_json()
Example #15
0
start_date = cases.Date.iloc[0].replace(tzinfo=None)
end_date = cases.Date.iloc[-1].replace(tzinfo=None)
#st.markdown("### Please choose the range of dates")
dates = st.date_input("Please choose the range of dates",
                      [start_date, end_date], start_date, end_date)
if len(dates) < 2:
    start_date = dates[0]
else:
    start_date, end_date = dates

cases = cases[(cases.Date >= pd.Timestamp(start_date, tz="Europe/Paris"))
              & (cases.Date < pd.Timestamp(end_date + dt.timedelta(days=1),
                                           tz="Europe/Paris"))]

chart = alt.LayerChart()
#st.markdown("### Evolution of Covid-19 cases for the chosen postal codes")
tooltip = [
    'Date',
    alt.Tooltip('Week_of_year', title='Week of year'), 'Name', 'District',
    'Population',
    alt.Tooltip('Area', title='Area (km²)', format='0.3'),
    alt.Tooltip(plot_y_axis_column_range, title='Range'),
    alt.Tooltip('NewDeaths_in_district_in_week',
                title='Weekly deaths in district')
]  #,alt.Tooltip(plot_y_axis_column_min, title='Min', format='0.3'),
x_axis = alt.X('Date', axis=alt.Axis(labels=True, format='%d %b'))
y_axis = alt.Y(plot_y_axis_column_avg, title=plot_y_axis_title)
legend = "|Area | Color | \n | - | - | \n"
for i, plz_name in enumerate(chosen_postal_areas):
    color = colors[i]
Example #16
0
def boxplot(
    x=None, y=None, hue=None, data=None, size=None, aspect=1,
    orient=None, color=None, palette=None, saturation=.75, dodge=True
):
    xs, ys = "x", "y"
    if data is None:
        data = pd.DataFrame({"x": x})
        x = "x"
        if y:
            data["y"] = y
            y = "y"

    if x is None and y is None:
        # Make a box plot for each numeric column
        numeric_cols = [c for c in data if data[c].dtype in [np.float32, np.float64]]
        col = []
        val = []
        for c in numeric_cols:
            for v in data[c]:
                col.append(c)
                val.append(v)

        data = pd.DataFrame({"column": col, "value": val})
        x = "column"
        y = "value"
        if orient == "h":
            x, y = y, x

    if y:
        orient = infer_orient(data[x], data[y], orient)
    elif orient is None:
        orient = "h"

    if orient == "h":
        x, y = y, x
        xs, ys = ys, xs

    xf = hue if hue and dodge else x

    # Main bar
    encodings = {
        ys: alt.Y(field=y, aggregate="q1", type="quantitative", axis={"title": y}),
        "%s2" % ys: alt.Y(field=y, aggregate="q3", type="quantitative"),
        "color": alt.Color(field=x ,type="nominal", legend=None),
        xs: alt.X(field=xf, type="nominal")
    }
    if x is None:
        del encodings["color"]
        del encodings[xs]
    if hue:
        legend = None if dodge else alt.Undefined
        encodings["color"] = alt.Color(field=hue ,type="nominal", legend=legend)
    bar_layer = alt.Chart().mark_bar().encode(**encodings)

    # Min/max range line
    range_encodings = {
        ys: alt.Y(field=y, aggregate="min", type="quantitative"),
        "%s2" % ys: alt.Y(field=y, aggregate="max", type="quantitative"),
        xs: alt.X(field=xf, type="nominal")
    }
    if x is None:
        del range_encodings[xs]
    range_layer = alt.Chart().mark_rule().encode(**range_encodings)

    # Median line
    median_encodings = {
        ys: alt.Y(field=y, aggregate="median", type="quantitative"),
        xs: alt.X(field=xf, type="nominal")
    }
    if x is None:
        del median_encodings[xs]
    median_layer = alt.Chart().mark_tick(size=18, color="black").encode(**median_encodings)

    chart = alt.LayerChart(data=data, layer=[range_layer, bar_layer, median_layer])

    if hue and dodge:
        facet_dir = "column" if orient == "v" else "row"
        chart = chart.facet(**{facet_dir: "%s:N" % x})

    size_chart(chart, size, aspect)

    pal = vega_palette(palette, color, saturation)
    return chart.configure_range(category=pal)