Example #1
0
	def __init__(self, batch_size, num_threads, device_id, data_dir, crop, rali_cpu = True,rali_type=True ):
		super(HybridTrainPipe, self).__init__(batch_size, num_threads, device_id, seed=12 + device_id,rali_cpu=rali_cpu)
		self.box = False if rali_type else True
		self.input = ops.CaffeReader(path = data_dir, bbox=self.box,random_shuffle=True)
		self.rali_type = rali_type
		rali_device = 'cpu' if rali_cpu else 'gpu'
		decoder_device = 'cpu' if rali_cpu else 'mixed'
		device_memory_padding = 211025920 if decoder_device == 'mixed' else 0
		host_memory_padding = 140544512 if decoder_device == 'mixed' else 0
		self.decode = ops.ImageDecoderRandomCrop(device=decoder_device, output_type=types.RGB,
													device_memory_padding=device_memory_padding,
													host_memory_padding=host_memory_padding,
													random_aspect_ratio=[0.8, 1.25],
													random_area=[0.1, 1.0],
													num_attempts=100)
		self.res = ops.Resize(device=rali_device, resize_x=crop, resize_y=crop)
		self.cmnp = ops.CropMirrorNormalize(device="gpu",
											output_dtype=types.FLOAT,
											output_layout=types.NCHW,
											crop=(crop, crop),
											image_type=types.RGB,
											mean=[0.485 * 255,0.456 * 255,0.406 * 255],
											std=[0.229 * 255,0.224 * 255,0.225 * 255])
		self.one_hot_labels = ops.OneHot(num_classes=1000)
		self.coin = ops.CoinFlip(probability=0.5)
		print('rali "{0}" variant'.format(rali_device))
 def __init__(self,
              feature_key_map,
              tfrecordreader_type,
              batch_size,
              num_threads,
              device_id,
              data_dir,
              crop,
              oneHotLabels=0,
              rali_cpu=True):
     super(HybridPipe, self).__init__(batch_size,
                                      num_threads,
                                      device_id,
                                      seed=12 + device_id,
                                      rali_cpu=rali_cpu)
     self.input = ops.TFRecordReader(path=data_dir,
                                     index_path="",
                                     reader_type=tfrecordreader_type,
                                     user_feature_key_map=feature_key_map,
                                     features={
                                         'image/encoded':
                                         tf.FixedLenFeature((), tf.string,
                                                            ""),
                                         'image/class/label':
                                         tf.FixedLenFeature([1], tf.int64,
                                                            -1),
                                         'image/filename':
                                         tf.FixedLenFeature((), tf.string,
                                                            "")
                                     })
     self._oneHotLabels = oneHotLabels
     rali_device = 'cpu' if rali_cpu else 'gpu'
     decoder_device = 'cpu' if rali_cpu else 'mixed'
     device_memory_padding = 211025920 if decoder_device == 'mixed' else 0
     host_memory_padding = 140544512 if decoder_device == 'mixed' else 0
     self.decode = ops.ImageDecoderRandomCrop(
         user_feature_key_map=feature_key_map,
         device=decoder_device,
         output_type=types.RGB,
         device_memory_padding=device_memory_padding,
         host_memory_padding=host_memory_padding,
         random_aspect_ratio=[0.8, 1.25],
         random_area=[0.1, 1.0],
         num_attempts=100)
     self.cmnp = ops.CropMirrorNormalize(
         device="cpu",
         output_dtype=types.FLOAT,
         output_layout=types.NCHW,
         crop=(crop, crop),
         image_type=types.RGB,
         mean=[0.485 * 255, 0.456 * 255, 0.406 * 255],
         std=[0.229 * 255, 0.224 * 255, 0.225 * 255])
     self.one_hot_labels = ops.OneHot(num_classes=1000)
     self.coin = ops.CoinFlip(probability=0.5)
     print('rali "{0}" variant'.format(rali_device))