Example #1
0
def constructEdataFromDataFrame(df, model, condition):
    """ Constructs an ExpData instance according to the provided Model and DataFrame

    Arguments:
        df: pd.DataFrame with Observable Names/Ids as columns
            standard deviations may be specified by appending '_std' as suffix
        model: Model instance
        condition: pd.Series with FixedParameter Names/Ids as columns
            preequilibration conditions may be specified by appending '_preeq' as suffix
            presimulation conditions may be specified by appending '_presim' as suffix

    Returns:
        ExpData instance

    Raises:

    """
    edata = ExpData(model.get())

    # timepoints
    df = df.sort_values(by='time', ascending=True)
    edata.setTimepoints(df['time'].values)

    overwrite_preeq = {}
    overwrite_presim = {}
    for par in list(_get_names_or_ids(model, 'FixedParameter')):
        if par + '_preeq' in condition.keys() \
                and not math.isnan(condition[par + '_preeq']):
            overwrite_preeq[par] = condition[par + '_preeq']
        if par + '_presim' in condition.keys() \
                and not math.isnan(condition[par + '_presim']):
            overwrite_presim[par] = condition[par + '_presim']

    # fixedParameters
    edata.fixedParameters = \
        condition[_get_names_or_ids(model, 'FixedParameter')].values

    if any([overwrite_preeq[key] != condition[key] for key in
            overwrite_preeq.keys()]):
        edata.fixedParametersPreequilibration = \
            _get_specialized_fixed_parameters(model, condition,overwrite_preeq)
    elif len(overwrite_preeq.keys()):
        edata.fixedParametersPreequilibration = copy.deepcopy(
            edata.fixedParameters
        )


    if any([overwrite_presim[key] != condition[key] for key in
            overwrite_presim.keys()]):
        edata.fixedParametersPresimulation = _get_specialized_fixed_parameters(
            model, condition,overwrite_presim
        )
    elif len(overwrite_presim.keys()):
        edata.fixedParametersPresimulation = copy.deepcopy(
            edata.fixedParameters
        )

    if 't_presim' in condition.keys():
        edata.t_presim = condition['t_presim']

    # data
    for obs_index, obs in enumerate(_get_names_or_ids(model, 'Observable')):
        if obs in df.keys():
            edata.setObservedData(df[obs].values,
                                  obs_index)
        if obs + '_std' in df.keys():
            edata.setObservedDataStdDev(
                df[obs + '_std'].values,
                obs_index
            )

    return edata
Example #2
0
def fill_in_parameters_for_condition(
        edata: amici.ExpData, problem_parameters: Dict[str, numbers.Number],
        scaled_parameters: bool,
        parameter_mapping: ParameterMappingForCondition,
        amici_model: AmiciModel) -> None:
    """Fill fixed and dynamic parameters into the edata for condition
    (in-place).

    :param edata:
        Experimental data object to fill parameters into.
    :param problem_parameters:
        Problem parameters as parameterId=>value dict. Only
        parameters included here will be set. Remaining parameters will
        be used as already set in `amici_model` and `edata`.
    :param scaled_parameters:
        If True, problem_parameters are assumed to be on the scale provided
        in the parameter mapping. If False, they
        are assumed to be in linear scale.
    :param parameter_mapping:
        Parameter mapping for current condition.
    :param amici_model:
        AMICI model
    """
    map_sim_var = parameter_mapping.map_sim_var
    scale_map_sim_var = parameter_mapping.scale_map_sim_var
    map_preeq_fix = parameter_mapping.map_preeq_fix
    scale_map_preeq_fix = parameter_mapping.scale_map_preeq_fix
    map_sim_fix = parameter_mapping.map_sim_fix
    scale_map_sim_fix = parameter_mapping.scale_map_sim_fix

    # Parameter mapping may contain parameter_ids as values, these *must*
    # be replaced

    def _get_par(model_par, value):
        """Replace parameter IDs in mapping dicts by values from
        problem_parameters where necessary"""
        if isinstance(value, str):
            # estimated parameter
            # (condition table overrides must have been handled already,
            # e.g. by the PEtab parameter mapping)
            return problem_parameters[value]
        if model_par in problem_parameters:
            # user-provided
            return problem_parameters[model_par]
        # constant value
        return value

    map_preeq_fix = {
        key: _get_par(key, val)
        for key, val in map_preeq_fix.items()
    }
    map_sim_fix = {key: _get_par(key, val) for key, val in map_sim_fix.items()}
    map_sim_var = {key: _get_par(key, val) for key, val in map_sim_var.items()}

    # If necessary, (un)scale parameters
    if scaled_parameters:
        unscale_parameters_dict(map_preeq_fix, scale_map_preeq_fix)
        unscale_parameters_dict(map_sim_fix, scale_map_sim_fix)
    if not scaled_parameters:
        # We scale all parameters to the scale they are estimated on, and pass
        # that information to amici via edata.{parameters,pscale}.
        # The scaling is necessary to obtain correct derivatives.
        scale_parameters_dict(map_sim_var, scale_map_sim_var)
        # We can skip preequilibration parameters, because they are identical
        # with simulation parameters, and only the latter are used from here
        # on.

    ##########################################################################
    # variable parameters and parameter scale

    # parameter list from mapping dict
    parameters = [
        map_sim_var[par_id] for par_id in amici_model.getParameterIds()
    ]

    # scales list from mapping dict
    scales = [
        petab_to_amici_scale(scale_map_sim_var[par_id])
        for par_id in amici_model.getParameterIds()
    ]

    if parameters:
        edata.parameters = parameters

    if scales:
        edata.pscale = amici.parameterScalingFromIntVector(scales)

    ##########################################################################
    # fixed parameters preequilibration
    if map_preeq_fix:
        fixed_pars_preeq = [
            map_preeq_fix[par_id]
            for par_id in amici_model.getFixedParameterIds()
        ]
        edata.fixedParametersPreequilibration = fixed_pars_preeq

    ##########################################################################
    # fixed parameters simulation
    if map_sim_fix:
        fixed_pars_sim = [
            map_sim_fix[par_id]
            for par_id in amici_model.getFixedParameterIds()
        ]
        edata.fixedParameters = fixed_pars_sim
Example #3
0
def constructEdataFromDataFrame(df, model, condition, by_id=False):
    """ Constructs an ExpData instance according to the provided Model and DataFrame.

    Arguments:
        df: pd.DataFrame with Observable Names/Ids as columns.
            Standard deviations may be specified by appending '_std' as suffix.
        model: Model instance.
        condition: pd.Series with FixedParameter Names/Ids as columns.
            Preequilibration conditions may be specified by appending '_preeq' as suffix.
            Presimulation conditions may be specified by appending '_presim' as suffix.
        by_id: bool, optional (default = False)
            Indicate whether in the arguments, column headers are based on ids or names.
            This should correspond to the way `df` and `condition` was created in the
            first place.

    Returns:
        ExpData instance.

    Raises:

    """
    # initialize edata
    edata = ExpData(model.get())

    # timepoints
    df = df.sort_values(by='time', ascending=True)
    edata.setTimepoints(df['time'].values)

    # get fixed parameters from condition
    overwrite_preeq = {}
    overwrite_presim = {}
    for par in list(_get_names_or_ids(model, 'FixedParameter', by_id=by_id)):
        if par + '_preeq' in condition.keys() \
                and not math.isnan(condition[par + '_preeq']):
            overwrite_preeq[par] = condition[par + '_preeq']
        if par + '_presim' in condition.keys() \
                and not math.isnan(condition[par + '_presim']):
            overwrite_presim[par] = condition[par + '_presim']

    # fill in fixed parameters
    edata.fixedParameters = \
        condition[_get_names_or_ids(model, 'FixedParameter', by_id=by_id)].values

    # fill in preequilibration parameters
    if any([
            overwrite_preeq[key] != condition[key]
            for key in overwrite_preeq.keys()
    ]):
        edata.fixedParametersPreequilibration = \
            _get_specialized_fixed_parameters(
                model, condition, overwrite_preeq, by_id=by_id)
    elif len(overwrite_preeq.keys()):
        edata.fixedParametersPreequilibration = copy.deepcopy(
            edata.fixedParameters)

    # fill in presimulation parameters
    if any([
            overwrite_presim[key] != condition[key]
            for key in overwrite_presim.keys()
    ]):
        edata.fixedParametersPresimulation = _get_specialized_fixed_parameters(
            model, condition, overwrite_presim, by_id=by_id)
    elif len(overwrite_presim.keys()):
        edata.fixedParametersPresimulation = copy.deepcopy(
            edata.fixedParameters)

    # fill in presimulation time
    if 't_presim' in condition.keys():
        edata.t_presim = condition['t_presim']

    # fill in data and stds
    for obs_index, obs in enumerate(
            _get_names_or_ids(model, 'Observable', by_id=by_id)):
        if obs in df.keys():
            edata.setObservedData(df[obs].values, obs_index)
        if obs + '_std' in df.keys():
            edata.setObservedDataStdDev(df[obs + '_std'].values, obs_index)

    return edata