Example #1
0
    def preprocess(self, indices):
        """Preprocesses anchor info and saves info to files

        Args:
            indices (int array): sample indices to process.
                If None, processes all samples
        """
        # Get anchor stride for class
        anchor_strides = self._anchor_strides

        dataset = self._dataset
        dataset_utils = self._dataset.kitti_utils
        classes_name = dataset.classes_name

        # Make folder if it doesn't exist yet
        output_dir = self.mini_batch_utils.get_file_path(classes_name,
                                                         anchor_strides,
                                                         sample_name=None)
        os.makedirs(output_dir, exist_ok=True)

        # Get clusters for class
        all_clusters_sizes, _ = dataset.get_cluster_info()

        anchor_generator = grid_anchor_3d_generator.GridAnchor3dGenerator()

        # Load indices of data_split
        all_samples = dataset.sample_list

        if indices is None:
            indices = np.arange(len(all_samples))
        num_samples = len(indices)

        # For each image in the dataset, save info on the anchors
        for sample_idx in indices:
            # Get image name for given cluster
            sample_name = all_samples[sample_idx].name
            img_idx = int(sample_name)

            # Check for existing files and skip to the next
            if self._check_for_existing(classes_name, anchor_strides,
                                        sample_name):
                print("{} / {}: Sample already preprocessed".format(
                    sample_idx + 1, num_samples, sample_name))
                continue

            # Get ground truth and filter based on difficulty
            ground_truth_list = obj_utils.read_labels(dataset.label_dir,
                                                      img_idx)

            # Filter objects to dataset classes
            filtered_gt_list = dataset_utils.filter_labels(ground_truth_list)
            filtered_gt_list = np.asarray(filtered_gt_list)

            # Filtering by class has no valid ground truth, skip this image
            if len(filtered_gt_list) == 0:
                print("{} / {} No {}s for sample {} "
                      "(Ground Truth Filter)".format(
                          sample_idx + 1, num_samples,
                          classes_name, sample_name))

                # Output an empty file and move on to the next image.
                self._save_to_file(classes_name, anchor_strides, sample_name)
                continue

            # Get ground plane
            ground_plane = obj_utils.get_road_plane(img_idx,
                                                    dataset.planes_dir)

            image = Image.open(dataset.get_rgb_image_path(sample_name))
            image_shape = [image.size[1], image.size[0]]

            # Generate sliced 2D voxel grid for filtering
            vx_grid_2d = dataset_utils.create_sliced_voxel_grid_2d(
                sample_name,
                source=dataset.bev_source,
                image_shape=image_shape)

            # List for merging all anchors
            all_anchor_boxes_3d = []

            # Create anchors for each class
            for class_idx in range(len(dataset.classes)):
                # Generate anchors for all classes
                grid_anchor_boxes_3d = anchor_generator.generate(
                    area_3d=self._area_extents,
                    anchor_3d_sizes=all_clusters_sizes[class_idx],
                    anchor_stride=self._anchor_strides[class_idx],
                    ground_plane=ground_plane)

                all_anchor_boxes_3d.extend(grid_anchor_boxes_3d)

            # Filter empty anchors
            all_anchor_boxes_3d = np.asarray(all_anchor_boxes_3d)
            anchors = box_3d_encoder.box_3d_to_anchor(all_anchor_boxes_3d)
            empty_anchor_filter = anchor_filter.get_empty_anchor_filter_2d(
                anchors, vx_grid_2d, self._density_threshold)

            # Calculate anchor info
            anchors_info = self._calculate_anchors_info(
                all_anchor_boxes_3d, empty_anchor_filter, filtered_gt_list)

            anchor_ious = anchors_info[:, self.mini_batch_utils.col_ious]

            valid_iou_indices = np.where(anchor_ious > 0.0)[0]

            print("{} / {}:"
                  "{:>6} anchors, "
                  "{:>6} iou > 0.0, "
                  "for {:>3} {}(s) for sample {}".format(
                      sample_idx + 1, num_samples,
                      len(anchors_info),
                      len(valid_iou_indices),
                      len(filtered_gt_list), classes_name, sample_name
                  ))

            # Save anchors info
            self._save_to_file(classes_name, anchor_strides,
                               sample_name, anchors_info)
Example #2
0
    def _calculate_anchors_info(self,
                                all_anchor_boxes_3d,
                                empty_anchor_filter,
                                gt_labels):
        """Calculates the list of anchor information in the format:
            N x 8 [max_gt_2d_iou, max_gt_3d_iou, (6 x offsets), class_index]
                max_gt_out - highest 3D iou with any ground truth box
                offsets - encoded offsets [dx, dy, dz, d_dimx, d_dimy, d_dimz]
                class_index - the anchor's class as an index
                    (e.g. 0 or 1, for "Background" or "Car")

        Args:
            all_anchor_boxes_3d: list of anchors in box_3d format
                N x [x, y, z, l, w, h, ry]
            empty_anchor_filter: boolean mask of which anchors are non empty
            gt_labels: list of Object Label data format containing ground truth
                labels to generate positives/negatives from.

        Returns:
            list of anchor info
        """
        # Check for ground truth objects
        if len(gt_labels) == 0:
            raise Warning("No valid ground truth label to generate anchors.")

        kitti_utils = self._dataset.kitti_utils

        # Filter empty anchors
        anchor_indices = np.where(empty_anchor_filter)[0]
        anchor_boxes_3d = all_anchor_boxes_3d[empty_anchor_filter]

        # Convert anchor_boxes_3d to anchor format
        anchors = box_3d_encoder.box_3d_to_anchor(anchor_boxes_3d)

        # Convert gt to boxes_3d -> anchors -> iou format
        gt_boxes_3d = np.asarray(
            [box_3d_encoder.object_label_to_box_3d(gt_obj)
             for gt_obj in gt_labels])
        gt_anchors = box_3d_encoder.box_3d_to_anchor(gt_boxes_3d,
                                                     ortho_rotate=True)

        p1_iou_type = self.mini_batch_utils.p1_iou_type
        if p1_iou_type == '2d':
            # Convert anchors to 2d iou format
            anchors_for_2d_iou, _ = np.asarray(anchor_projector.project_to_bev(
                anchors, kitti_utils.bev_extents))

            gt_boxes_for_2d_iou, _ = anchor_projector.project_to_bev(
                gt_anchors, kitti_utils.bev_extents)

        elif p1_iou_type == '3d':
            # Convert anchors to 3d iou format for calculation
            anchors_for_3d_iou = box_3d_encoder.box_3d_to_3d_iou_format(
                anchor_boxes_3d)

            gt_boxes_for_3d_iou = \
                box_3d_encoder.box_3d_to_3d_iou_format(gt_boxes_3d)
        else:
            raise ValueError('Invalid p1_iou_type {}', p1_iou_type)

        # Initialize sample and offset lists
        num_anchors = len(anchor_boxes_3d)
        all_info = np.zeros((num_anchors,
                             self.mini_batch_utils.col_length))

        # Update anchor indices
        all_info[:, self.mini_batch_utils.col_anchor_indices] = anchor_indices

        # For each of the labels, generate samples
        for gt_idx in range(len(gt_labels)):

            gt_obj = gt_labels[gt_idx]
            gt_box_3d = gt_boxes_3d[gt_idx]

            # Get 2D or 3D IoU for every anchor
            if self.mini_batch_utils.p1_iou_type == '2d':
                gt_box_for_2d_iou = gt_boxes_for_2d_iou[gt_idx]
                ious = evaluation.two_d_iou(gt_box_for_2d_iou,
                                            anchors_for_2d_iou)
            elif self.mini_batch_utils.p1_iou_type == '3d':
                gt_box_for_3d_iou = gt_boxes_for_3d_iou[gt_idx]
                ious = evaluation.three_d_iou(gt_box_for_3d_iou,
                                              anchors_for_3d_iou)

            # Only update indices with a higher iou than before
            update_indices = np.greater(
                ious, all_info[:, self.mini_batch_utils.col_ious])

            # Get ious to update
            ious_to_update = ious[update_indices]

            # Calculate offsets, use 3D iou to get highest iou
            anchors_to_update = anchors[update_indices]
            gt_anchor = box_3d_encoder.box_3d_to_anchor(gt_box_3d,
                                                        ortho_rotate=True)
            offsets = anchor_encoder.anchor_to_offset(anchors_to_update,
                                                      gt_anchor)

            # Convert gt type to index
            class_idx = kitti_utils.class_str_to_index(gt_obj.type)

            # Update anchors info (indices already updated)
            # [index, iou, (offsets), class_index]
            all_info[update_indices,
                     self.mini_batch_utils.col_ious] = ious_to_update

            all_info[update_indices,
                     self.mini_batch_utils.col_offsets_lo:
                     self.mini_batch_utils.col_offsets_hi] = offsets
            all_info[update_indices,
                     self.mini_batch_utils.col_class_idx] = class_idx

        return all_info
Example #3
0
def main():
    """This demo shows p1 proposals and ammf predictions in 3D
    and 2D in image space. Given certain thresholds for proposals
    and predictions, it selects and draws the bounding boxes on
    the image sample. It goes through the entire proposal and
    prediction samples for the given dataset split.

    The proposals, overlaid, and prediction images can be toggled on or off
    separately in the options section.
    The prediction score and IoU with ground truth can be toggled on or off
    as well, shown as (score, IoU) above the detection.
    """
    dataset_config = DatasetBuilder.copy_config(DatasetBuilder.KITTI_VAL)

    ##############################
    # Options
    ##############################
    dataset_config.data_split = 'val'  #bqx!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

    fig_size = (10, 6.1)

    p1_score_threshold = 0.8
    ammf_score_threshold = 0.1

    #gt_classes = ['Car']
    gt_classes = ['Pedestrian', 'Cyclist']

    # Overwrite this to select a specific checkpoint
    global_step = None
    #checkpoint_name = 'ammf_cars_example'
    #checkpoint_name = 'pyramid_cars_with_aug_example'
    checkpoint_name = 'people'

    # Drawing Toggles
    draw_proposals_separate = True
    draw_overlaid = True
    draw_predictions_separate = True

    # Show orientation for both GT and proposals/predictions
    draw_orientations_on_prop = True
    draw_orientations_on_pred = True

    # Draw 2D bounding boxes
    draw_projected_2d_boxes = True

    # Save images for samples with no detections
    save_empty_images = True

    draw_score = True
    draw_iou = True
    ##############################
    # End of Options
    ##############################

    # Get the dataset
    dataset = DatasetBuilder.build_kitti_dataset(dataset_config)

    # Setup Paths
    predictions_dir = ammf.root_dir() + \
        '/data/outputs/' + checkpoint_name + '/predictions'

    proposals_and_scores_dir= predictions_dir + \
        '/proposals_and_scores/' + dataset.data_split

    predictions_and_scores_dir = predictions_dir + \
        '/final_predictions_and_scores/' + dataset.data_split

    # Output images directories
    output_dir_base = predictions_dir + '/images_2d'

    # Get checkpoint step
    #steps = os.listdir()
    #steps.sort(key=int)
    #print('Available steps: {}'.format(steps))

    # Use latest checkpoint if no index provided
    if global_step is None:
        #global_step = steps[-1]
        global_step = '120000'  #!!!!!!!!!!!!!!!!!!!!!!

    if draw_proposals_separate:
        prop_out_dir = output_dir_base + '/proposals/{}/{}/{}'.format(
            dataset.data_split, global_step, p1_score_threshold)

        if not os.path.exists(prop_out_dir):
            os.makedirs(prop_out_dir)

        print('Proposal images saved to:', prop_out_dir)

    if draw_overlaid:
        overlaid_out_dir = output_dir_base + '/overlaid/{}/{}/{}'.format(
            dataset.data_split, global_step, ammf_score_threshold)

        if not os.path.exists(overlaid_out_dir):
            os.makedirs(overlaid_out_dir)

        print('Overlaid images saved to:', overlaid_out_dir)

    if draw_predictions_separate:
        pred_out_dir = output_dir_base + '/predictions/{}/{}/{}'.format(
            dataset.data_split, global_step, ammf_score_threshold)

        if not os.path.exists(pred_out_dir):
            os.makedirs(pred_out_dir)

        print('Prediction images saved to:', pred_out_dir)

    # Rolling average array of times for time estimation
    avg_time_arr_length = 10
    last_times = np.repeat(time.time(), avg_time_arr_length) + \
        np.arange(avg_time_arr_length)

    for sample_idx in range(dataset.num_samples):
        # Estimate time remaining with 5 slowest times
        start_time = time.time()
        last_times = np.roll(last_times, -1)
        last_times[-1] = start_time
        avg_time = np.mean(np.sort(np.diff(last_times))[-5:])
        samples_remaining = dataset.num_samples - sample_idx
        est_time_left = avg_time * samples_remaining

        # Print progress and time remaining estimate
        sys.stdout.write('\rSaving {} / {}, Avg Time: {:.3f}s, '
                         'Time Remaining: {:.2f}s'.format(
                             sample_idx + 1, dataset.num_samples, avg_time,
                             est_time_left))
        sys.stdout.flush()
        #sample_idx=188
        sample_name = dataset.sample_names[sample_idx]
        img_idx = int(sample_name)
        #img_idx = 188 #bqx!!!!!!!!!!!!!!!!!!!!111

        ##############################
        # Proposals
        ##############################
        if draw_proposals_separate or draw_overlaid:
            # Load proposals from files
            proposals_file_path = proposals_and_scores_dir + \
                "/{}/{}.txt".format(global_step, sample_name)
            if not os.path.exists(proposals_file_path):
                print('Sample {}: No proposals, skipping'.format(sample_name))
                continue
            print('Sample {}: Drawing proposals'.format(sample_name))

            proposals_and_scores = np.loadtxt(proposals_file_path)

            proposal_boxes_3d = proposals_and_scores[:, 0:7]
            proposal_scores = proposals_and_scores[:, 7]

            # Apply score mask to proposals
            score_mask = proposal_scores > p1_score_threshold
            proposal_boxes_3d = proposal_boxes_3d[score_mask]
            proposal_scores = proposal_scores[score_mask]

            proposal_objs = \
                [box_3d_encoder.box_3d_to_object_label(proposal,
                                                       obj_type='Proposal')
                 for proposal in proposal_boxes_3d]

        ##############################
        # Predictions
        ##############################
        if draw_predictions_separate or draw_overlaid:
            predictions_file_path = predictions_and_scores_dir + \
                "/{}/{}.txt".format(global_step,
                                    sample_name)
            if not os.path.exists(predictions_file_path):
                continue

            # Load predictions from files
            predictions_and_scores = np.loadtxt(
                predictions_and_scores_dir +
                "/{}/{}.txt".format(global_step, sample_name))

            prediction_boxes_3d = predictions_and_scores[:, 0:7]
            prediction_scores = predictions_and_scores[:, 7]
            prediction_class_indices = predictions_and_scores[:, 8]

            # process predictions only if we have any predictions left after
            # masking
            if len(prediction_boxes_3d) > 0:

                # Apply score mask
                ammf_score_mask = prediction_scores >= ammf_score_threshold
                prediction_boxes_3d = prediction_boxes_3d[ammf_score_mask]
                prediction_scores = prediction_scores[ammf_score_mask]
                prediction_class_indices = \
                    prediction_class_indices[ammf_score_mask]

                # # Swap l, w for predictions where w > l
                # swapped_indices = \
                #     prediction_boxes_3d[:, 4] > prediction_boxes_3d[:, 3]
                # prediction_boxes_3d = np.copy(prediction_boxes_3d)
                # prediction_boxes_3d[swapped_indices, 3] = \
                #     prediction_boxes_3d[swapped_indices, 4]
                # prediction_boxes_3d[swapped_indices, 4] = \
                #     prediction_boxes_3d[swapped_indices, 3]

        ##############################
        # Ground Truth
        ##############################

        # Get ground truth labels
        if dataset.has_labels:
            gt_objects = obj_utils.read_labels(dataset.label_dir, img_idx)
        else:
            gt_objects = []

        # Filter objects to desired difficulty
        filtered_gt_objs = dataset.kitti_utils.filter_labels(
            gt_objects, classes=gt_classes)

        boxes2d, _, _ = obj_utils.build_bbs_from_objects(
            filtered_gt_objs, class_needed=gt_classes)

        image_path = dataset.get_rgb_image_path(sample_name)
        image = Image.open(image_path)
        image_size = image.size

        # Read the stereo calibration matrix for visualization
        stereo_calib = calib_utils.read_calibration(dataset.calib_dir, img_idx)
        calib_p2 = stereo_calib.p2

        ##############################
        # Reformat and prepare to draw
        ##############################
        if draw_proposals_separate or draw_overlaid:
            proposals_as_anchors = box_3d_encoder.box_3d_to_anchor(
                proposal_boxes_3d)

            proposal_boxes, _ = anchor_projector.project_to_image_space(
                proposals_as_anchors, calib_p2, image_size)

            num_of_proposals = proposal_boxes_3d.shape[0]

            prop_fig, prop_2d_axes, prop_3d_axes = \
                vis_utils.visualization(dataset.rgb_image_dir,
                                        img_idx,
                                        display=False)

            draw_proposals(filtered_gt_objs, calib_p2, num_of_proposals,
                           proposal_objs, proposal_boxes, prop_2d_axes,
                           prop_3d_axes, draw_orientations_on_prop)

            if draw_proposals_separate:
                # Save just the proposals
                filename = prop_out_dir + '/' + sample_name + '.png'
                plt.savefig(filename)

                if not draw_overlaid:
                    plt.close(prop_fig)

        if draw_overlaid or draw_predictions_separate:
            if len(prediction_boxes_3d) > 0:
                # Project the 3D box predictions to image space
                image_filter = []
                final_boxes_2d = []
                for i in range(len(prediction_boxes_3d)):
                    box_3d = prediction_boxes_3d[i, 0:7]
                    img_box = box_3d_projector.project_to_image_space(
                        box_3d,
                        calib_p2,
                        truncate=True,
                        image_size=image_size,
                        discard_before_truncation=False)
                    if img_box is not None:
                        image_filter.append(True)
                        final_boxes_2d.append(img_box)
                    else:
                        image_filter.append(False)
                final_boxes_2d = np.asarray(final_boxes_2d)
                final_prediction_boxes_3d = prediction_boxes_3d[image_filter]
                final_scores = prediction_scores[image_filter]
                final_class_indices = prediction_class_indices[image_filter]

                num_of_predictions = final_boxes_2d.shape[0]

                # Convert to objs
                final_prediction_objs = \
                    [box_3d_encoder.box_3d_to_object_label(
                        prediction, obj_type='Prediction')
                        for prediction in final_prediction_boxes_3d]
                for (obj, score) in zip(final_prediction_objs, final_scores):
                    obj.score = score
            else:
                if save_empty_images:
                    pred_fig, pred_2d_axes, pred_3d_axes = \
                        vis_utils.visualization(dataset.rgb_image_dir,
                                                img_idx,
                                                display=False,
                                                fig_size=fig_size)
                    filename = pred_out_dir + '/' + sample_name + '.png'
                    plt.savefig(filename)
                    plt.close(pred_fig)
                continue

            if draw_overlaid:
                # Overlay prediction boxes on image
                draw_predictions(filtered_gt_objs, calib_p2,
                                 num_of_predictions, final_prediction_objs,
                                 final_class_indices, final_boxes_2d,
                                 prop_2d_axes, prop_3d_axes, draw_score,
                                 draw_iou, gt_classes,
                                 draw_orientations_on_pred)
                filename = overlaid_out_dir + '/' + sample_name + '.png'
                plt.savefig(filename)

                plt.close(prop_fig)

            if draw_predictions_separate:
                # Now only draw prediction boxes on images
                # on a new figure handler
                if draw_projected_2d_boxes:
                    pred_fig, pred_2d_axes, pred_3d_axes = \
                        vis_utils.visualization(dataset.rgb_image_dir,
                                                img_idx,
                                                display=False,
                                                fig_size=fig_size)

                    draw_predictions(filtered_gt_objs, calib_p2,
                                     num_of_predictions, final_prediction_objs,
                                     final_class_indices, final_boxes_2d,
                                     pred_2d_axes, pred_3d_axes, draw_score,
                                     draw_iou, gt_classes,
                                     draw_orientations_on_pred)
                else:
                    pred_fig, pred_3d_axes = \
                        vis_utils.visualize_single_plot(
                            dataset.rgb_image_dir, img_idx, display=False)

                    draw_3d_predictions(filtered_gt_objs, calib_p2,
                                        num_of_predictions,
                                        final_prediction_objs,
                                        final_class_indices, final_boxes_2d,
                                        pred_3d_axes, draw_score, draw_iou,
                                        gt_classes, draw_orientations_on_pred)
                filename = pred_out_dir + '/' + sample_name + '.png'
                plt.savefig(filename)
                plt.close(pred_fig)

    print('\nDone')
Example #4
0
def np_box_3d_to_box_8c(box_3d):
    """Computes the 3D bounding box corner positions from box_3d format.

    This function does not preserve corners order but rather the corners
    are rotated to the nearest 90 degree angle. This helps in calculating
    the closest corner to corner when comparing the corners to the ground-
    truth boxes.

    Args:
        box_3d: ndarray of size (7,) representing box_3d in the format
            [x, y, z, l, w, h, ry]
    Returns:
        corners_3d: An ndarray or a tensor of shape (3 x 8) representing
            the box as corners in following format -> [[x1,...,x8],[y1...,y8],
            [z1,...,z8]].
    """

    format_checker.check_box_3d_format(box_3d)

    # This function is vectorized and returns an ndarray
    anchor = box_3d_encoder.box_3d_to_anchor(box_3d, ortho_rotate=True)[0]

    centroid_x = anchor[0]
    centroid_y = anchor[1]
    centroid_z = anchor[2]
    dim_x = anchor[3]
    dim_y = anchor[4]
    dim_z = anchor[5]

    half_dim_x = dim_x / 2
    half_dim_z = dim_z / 2

    # 3D BB corners
    x_corners = np.array([
        half_dim_x, half_dim_x, -half_dim_x, -half_dim_x, half_dim_x,
        half_dim_x, -half_dim_x, -half_dim_x
    ])

    y_corners = np.array([0.0, 0.0, 0.0, 0.0, -dim_y, -dim_y, -dim_y, -dim_y])

    z_corners = np.array([
        half_dim_z, -half_dim_z, -half_dim_z, half_dim_z, half_dim_z,
        -half_dim_z, -half_dim_z, half_dim_z
    ])

    ry = box_3d[6]

    # Find nearest 90 degree
    half_pi = np.pi / 2
    ortho_ry = np.round(ry / half_pi) * half_pi

    # Find rotation to make the box ortho aligned
    ry_diff = ry - ortho_ry

    # Compute transform matrix
    # This includes rotation and translation
    rot = np.array([[np.cos(ry_diff), 0,
                     np.sin(ry_diff), centroid_x], [0, 1, 0, centroid_y],
                    [-np.sin(ry_diff), 0,
                     np.cos(ry_diff), centroid_z]])

    # Create a ones column
    ones_col = np.ones(x_corners.shape)

    # Append the column of ones to be able to multiply
    box_8c = np.dot(rot, np.array([x_corners, y_corners, z_corners, ones_col]))
    # Ignore the fourth column
    box_8c = box_8c[0:3]

    return box_8c
Example #5
0
def main():
    """
    Visualization of 3D grid anchor generation, showing 2D projections
        in BEV and image space, and a 3D display of the anchors
    """
    dataset_config = DatasetBuilder.copy_config(DatasetBuilder.KITTI_TRAIN)
    dataset_config.num_clusters[0] = 1
    dataset = DatasetBuilder.build_kitti_dataset(dataset_config)

    label_cluster_utils = LabelClusterUtils(dataset)
    clusters, _ = label_cluster_utils.get_clusters()

    # Options
    img_idx = 1
    # fake_clusters = np.array([[5, 4, 3], [6, 5, 4]])
    # fake_clusters = np.array([[3, 3, 3], [4, 4, 4]])

    fake_clusters = np.array([[4, 2, 3]])
    fake_anchor_stride = [5.0, 5.0]
    ground_plane = [0, -1, 0, 1.72]

    anchor_3d_generator = grid_anchor_3d_generator.GridAnchor3dGenerator()

    area_extents = np.array([[-40, 40], [-5, 5], [0, 70]])

    # Generate anchors for cars only
    start_time = time.time()
    anchor_boxes_3d = anchor_3d_generator.generate(
        area_3d=dataset.kitti_utils.area_extents,
        anchor_3d_sizes=fake_clusters,
        anchor_stride=fake_anchor_stride,
        ground_plane=ground_plane)
    all_anchors = box_3d_encoder.box_3d_to_anchor(anchor_boxes_3d)
    end_time = time.time()
    print("Anchors generated in {} s".format(end_time - start_time))

    # Project into bev
    bev_boxes, bev_normalized_boxes = \
        anchor_projector.project_to_bev(all_anchors, area_extents[[0, 2]])

    bev_fig, (bev_axes, bev_normalized_axes) = \
        plt.subplots(1, 2, figsize=(16, 7))
    bev_axes.set_xlim(0, 80)
    bev_axes.set_ylim(70, 0)
    bev_normalized_axes.set_xlim(0, 1.0)
    bev_normalized_axes.set_ylim(1, 0.0)

    plt.show(block=False)

    for box in bev_boxes:
        box_w = box[2] - box[0]
        box_h = box[3] - box[1]

        rect = patches.Rectangle((box[0], box[1]),
                                 box_w,
                                 box_h,
                                 linewidth=2,
                                 edgecolor='b',
                                 facecolor='none')

        bev_axes.add_patch(rect)

    for normalized_box in bev_normalized_boxes:
        box_w = normalized_box[2] - normalized_box[0]
        box_h = normalized_box[3] - normalized_box[1]

        rect = patches.Rectangle((normalized_box[0], normalized_box[1]),
                                 box_w,
                                 box_h,
                                 linewidth=2,
                                 edgecolor='b',
                                 facecolor='none')

        bev_normalized_axes.add_patch(rect)

    rgb_fig, rgb_2d_axes, rgb_3d_axes = \
        vis_utils.visualization(dataset.rgb_image_dir, img_idx)
    plt.show(block=False)

    image_path = dataset.get_rgb_image_path(dataset.sample_names[img_idx])
    image_shape = np.array(Image.open(image_path)).shape

    stereo_calib_p2 = calib_utils.read_calibration(dataset.calib_dir,
                                                   img_idx).p2

    start_time = time.time()
    rgb_boxes, rgb_normalized_boxes = \
        anchor_projector.project_to_image_space(all_anchors,
                                                stereo_calib_p2,
                                                image_shape)
    end_time = time.time()
    print("Anchors projected in {} s".format(end_time - start_time))

    # Read the stereo calibration matrix for visualization
    stereo_calib = calib_utils.read_calibration(dataset.calib_dir, 0)
    p = stereo_calib.p2

    # Overlay boxes on images

    for anchor_idx in range(len(anchor_boxes_3d)):
        anchor_box_3d = anchor_boxes_3d[anchor_idx]

        obj_label = box_3d_encoder.box_3d_to_object_label(anchor_box_3d)

        # Draw 3D boxes
        vis_utils.draw_box_3d(rgb_3d_axes, obj_label, p)

        # Draw 2D boxes
        rgb_box_2d = rgb_boxes[anchor_idx]

        box_x1 = rgb_box_2d[0]
        box_y1 = rgb_box_2d[1]
        box_w = rgb_box_2d[2] - box_x1
        box_h = rgb_box_2d[3] - box_y1

        rect = patches.Rectangle((box_x1, box_y1),
                                 box_w,
                                 box_h,
                                 linewidth=2,
                                 edgecolor='b',
                                 facecolor='none')

        rgb_2d_axes.add_patch(rect)

        if anchor_idx % 32 == 0:
            rgb_fig.canvas.draw()

    plt.show(block=True)
Example #6
0
    def load_samples(self, indices):
        """ Loads input-output data for a set of samples. Should only be
            called when a particular sample dict is required. Otherwise,
            samples should be provided by the next_batch function

        Args:
            indices: A list of sample indices from the dataset.sample_list
                to be loaded

        Return:
            samples: a list of data sample dicts
        """
        sample_dicts = []
        for sample_idx in indices:
            sample = self.sample_list[sample_idx]
            sample_name = sample.name
            #8.1 labels
            # Only read labels if they exist
            if self.has_labels:
                # Read mini batch first to see if it is empty
                anchors_info = self.get_anchors_info(sample_name)

                if (not anchors_info) and self.train_val_test == 'train' \
                        and (not self.train_on_all_samples):
                    empty_sample_dict = {
                        constants.KEY_SAMPLE_NAME: sample_name,
                        constants.KEY_ANCHORS_INFO: anchors_info
                    }
                    return [empty_sample_dict]

                obj_labels = obj_utils.read_labels(self.label_dir,
                                                   int(sample_name))

                # Only use objects that match dataset classes
                obj_labels = self.kitti_utils.filter_labels(obj_labels)

            else:
                obj_labels = None

                anchors_info = []

                label_anchors = np.zeros((1, 6))
                label_boxes_3d = np.zeros((1, 7))
                label_classes = np.zeros(1)

            img_idx = int(sample_name)

            #2. Load image (BGR -> RGB)
            cv_bgr_image = cv2.imread(self.get_rgb_image_path(sample_name))
            #cv_bgr_image = plt.imread(self.get_rgb_image_path(
            #sample_name))
            print(cv_bgr_image.shape)
            print("cv_bgr_image.shape")
            rgb_image = cv_bgr_image[..., ::-1]
            image_shape = rgb_image.shape[0:2]
            image_input = rgb_image

            #.Load seg (BGR -> RGB)
            #cv_bgr_seg = cv2.imread(self.get_rgb_seg_path(sample_name))

            seg_input = 0
            label_seg_input = 0
            seg_filelist = os.listdir(
                '/media/bangquanxie/4FCF996C7FA0ED8D/Kitti/object/training/image_seg_2'
            )
            if int(sample_name) < len(seg_filelist):
                cv_bgr_seg = plt.imread(self.get_rgb_seg_path(sample_name))
                print(cv_bgr_seg.shape)
                print("cv_bgr_seg.shape")
                rgb_seg = cv_bgr_seg[..., ::-1]
                seg_shape = rgb_seg.shape[0:2]
                seg_input = rgb_seg

                cv_bgr_label_seg = plt.imread(
                    self.get_rgb_label_seg_path(sample_name))
                print(cv_bgr_seg.shape)
                print("cv_bgr_seg.shape")
                rgb_label_seg = cv_bgr_label_seg[..., ::-1]
                label_seg_shape = rgb_label_seg.shape[0:2]
                label_seg_input = rgb_label_seg
            '''          
            #.Load label_seg (BGR -> RGB) self.label_seg_dir
            cv_bgr_label_seg = cv2.imread(self.get_rgb_label_seg_path(sample_name))
            #cv_bgr_image = plt.imread(self.get_rgb_image_path(
                #sample_name))
            rgb_label_seg = cv_bgr_label_seg[..., :: -1]
            label_seg_shape = rgb_label_seg.shape[0:2]
            label_seg_input = rgb_label_seg


            #bqx:road
            dir_seg = 0
            dir_seg = self.image_dir_seg 
            dir_segs = obj_utils.get_rgb_image_path_seg(self.image_dir_seg)

            for i in range(len(dir_segs)):
                dir_seg=dir_segs[i]

            rgb_image = plt.imread(dir_seg)
            #rgb_image = cv_bgr_image[..., :: -1]
            image_shape = rgb_image.shape[0:2]
            image_input_seg = rgb_image
            '''

            # Get ground plane
            ground_plane = obj_utils.get_road_plane(int(sample_name),
                                                    self.planes_dir)

            # Get calibration
            stereo_calib_p2 = calib_utils.read_calibration(
                self.calib_dir, int(sample_name)).p2

            point_cloud = self.kitti_utils.get_point_cloud(
                self.bev_source, img_idx, image_shape)

            # Augmentation (Flipping)
            if kitti_aug.AUG_FLIPPING in sample.augs:
                image_input = kitti_aug.flip_image(image_input)

                point_cloud = kitti_aug.flip_point_cloud(point_cloud)
                obj_labels = [
                    kitti_aug.flip_label_in_3d_only(obj) for obj in obj_labels
                ]
                ground_plane = kitti_aug.flip_ground_plane(ground_plane)
                stereo_calib_p2 = kitti_aug.flip_stereo_calib_p2(
                    stereo_calib_p2, image_shape)

            # Augmentation (Image Jitter)
            if kitti_aug.AUG_PCA_JITTER in sample.augs:
                image_input[:, :,
                            0:3] = kitti_aug.apply_pca_jitter(image_input[:, :,
                                                                          0:3])

            #bqx:

            if obj_labels is not None:
                label_boxes_3d = np.asarray([
                    box_3d_encoder.object_label_to_box_3d(obj_label)
                    for obj_label in obj_labels
                ])

                label_classes = [
                    self.kitti_utils.class_str_to_index(obj_label.type)
                    for obj_label in obj_labels
                ]
                label_classes = np.asarray(label_classes, dtype=np.int32)

                #seg_label = np.asarray(seg_label, dtype=np.int32)

                # Return empty anchors_info if no ground truth after filtering
                if len(label_boxes_3d) == 0:
                    anchors_info = []
                    if self.train_on_all_samples:
                        # If training without any positive labels, we cannot
                        # set these to zeros, because later on the offset calc
                        # uses log on these anchors. So setting any arbitrary
                        # number here that does not break the offset calculation
                        # should work, since the negative samples won't be
                        # regressed in any case.
                        dummy_anchors = [[-1000, -1000, -1000, 1, 1, 1]]
                        label_anchors = np.asarray(dummy_anchors)
                        dummy_boxes = [[-1000, -1000, -1000, 1, 1, 1, 0]]
                        label_boxes_3d = np.asarray(dummy_boxes)
                    else:
                        label_anchors = np.zeros((1, 6))
                        label_boxes_3d = np.zeros((1, 7))
                    label_classes = np.zeros(1)
                else:
                    label_anchors = box_3d_encoder.box_3d_to_anchor(
                        label_boxes_3d, ortho_rotate=True)

            # Create BEV maps
            bev_images = self.kitti_utils.create_bev_maps(
                point_cloud, ground_plane)

            height_maps = bev_images.get('height_maps')
            density_map = bev_images.get('density_map')
            bev_input = np.dstack((*height_maps, density_map))

            sample_dict = {
                constants.KEY_LABEL_BOXES_3D: label_boxes_3d,
                constants.KEY_LABEL_ANCHORS: label_anchors,
                constants.KEY_LABEL_CLASSES: label_classes,
                #bqx:road
                constants.KEY_IMAGE_INPUT: image_input,
                constants.KEY_BEV_INPUT: bev_input,
                #bqx:road
                constants.KEY_SEG_INPUT: seg_input,
                constants.KEY_LABEL_SEG: label_seg_input,
                constants.KEY_ANCHORS_INFO: anchors_info,
                constants.KEY_POINT_CLOUD: point_cloud,
                constants.KEY_GROUND_PLANE: ground_plane,
                constants.KEY_STEREO_CALIB_P2: stereo_calib_p2,
                constants.KEY_SAMPLE_NAME: sample_name,
                constants.KEY_SAMPLE_AUGS: sample.augs
            }
            sample_dicts.append(sample_dict)

        return sample_dicts
Example #7
0
def np_box_3d_to_box_4c(box_3d, ground_plane):
    """Converts a single box_3d to box_4c

    Args:
        box_3d: box_3d (6,)
        ground_plane: ground plane coefficients (4,)

    Returns:
        box_4c (10,)
    """
    format_checker.check_box_3d_format(box_3d)

    anchor = box_3d_encoder.box_3d_to_anchor(box_3d, ortho_rotate=True)[0]

    centroid_x = anchor[0]
    centroid_y = anchor[1]
    centroid_z = anchor[2]
    dim_x = anchor[3]
    dim_y = anchor[4]
    dim_z = anchor[5]

    # Create temporary box at (0, 0) for rotation
    half_dim_x = dim_x / 2
    half_dim_z = dim_z / 2

    # Box corners
    x_corners = np.asarray([half_dim_x, half_dim_x,
                            -half_dim_x, -half_dim_x])

    z_corners = np.array([half_dim_z, -half_dim_z,
                          -half_dim_z, half_dim_z])

    ry = box_3d[6]

    # Find nearest 90 degree
    half_pi = np.pi / 2
    ortho_ry = np.round(ry / half_pi) * half_pi

    # Find rotation to make the box ortho aligned
    ry_diff = ry - ortho_ry

    # Create transformation matrix, including rotation and translation
    tr_mat = np.array([[np.cos(ry_diff), np.sin(ry_diff), centroid_x],
                       [-np.sin(ry_diff), np.cos(ry_diff), centroid_z],
                       [0, 0, 1]])

    # Create a ones row
    ones_row = np.ones(x_corners.shape)

    # Append the column of ones to be able to multiply
    points_stacked = np.vstack([x_corners, z_corners, ones_row])
    corners = np.matmul(tr_mat, points_stacked)

    # Discard the last row (ones)
    corners = corners[0:2]

    # Calculate height off ground plane
    ground_y = geometry_utils.calculate_plane_point(
        ground_plane, [centroid_x, None, centroid_z])[1]
    h1 = ground_y - centroid_y
    h2 = h1 + dim_y

    # Stack into (10,) ndarray
    box_4c = np.hstack([corners.flatten(), h1, h2])
    return box_4c