Example #1
0
def periodic_0th_bfgs_step_test():

    ###########################################################################
    # Making the list of images

    images = [
        Atoms(symbols='PdOPd',
              pbc=np.array([True, False, False], dtype=bool),
              cell=np.array([[2., 0., 0.], [0., 2., 0.], [0., 0., 2.]]),
              positions=np.array([[0.5, 1., 0.5], [1., 0.5, 1.],
                                  [1.5, 1.5, 1.5]])),
        Atoms(symbols='PdO',
              pbc=np.array([True, True, False], dtype=bool),
              cell=np.array([[2., 0., 0.], [0., 2., 0.], [0., 0., 2.]]),
              positions=np.array([[0.5, 1., 0.5], [1., 0.5, 1.]])),
        Atoms(symbols='Cu',
              pbc=np.array([True, True, False], dtype=bool),
              cell=np.array([[1.8, 0., 0.], [0., 1.8, 0.], [0., 0., 1.8]]),
              positions=np.array([[0., 0., 0.]]))
    ]

    for image in images:
        image.set_calculator(EMT())
        image.get_potential_energy(apply_constraint=False)
        image.get_forces(apply_constraint=False)

    ###########################################################################
    # Parameters

    Gs = {
        'O': [{
            'type': 'G2',
            'element': 'Pd',
            'eta': 0.8
        }, {
            'type': 'G4',
            'elements': ['O', 'Pd'],
            'eta': 0.3,
            'gamma': 0.6,
            'zeta': 0.5
        }],
        'Pd': [{
            'type': 'G2',
            'element': 'Pd',
            'eta': 0.2
        }, {
            'type': 'G4',
            'elements': ['Pd', 'Pd'],
            'eta': 0.9,
            'gamma': 0.75,
            'zeta': 1.5
        }],
        'Cu': [{
            'type': 'G2',
            'element': 'Cu',
            'eta': 0.8
        }, {
            'type': 'G4',
            'elements': ['Cu', 'Cu'],
            'eta': 0.3,
            'gamma': 0.6,
            'zeta': 0.5
        }]
    }

    hiddenlayers = {'O': (2), 'Pd': (2), 'Cu': (2)}

    weights = OrderedDict([
        ('O',
         OrderedDict([(1, np.matrix([[-2.0, 6.0], [3.0, -3.0], [1.5, -0.9]])),
                      (2, np.matrix([[5.5], [3.6], [1.4]]))])),
        ('Pd',
         OrderedDict([(1, np.matrix([[-1.0, 3.0], [2.0, 4.2], [1.0, -0.7]])),
                      (2, np.matrix([[4.0], [0.5], [3.0]]))])),
        ('Cu',
         OrderedDict([(1, np.matrix([[0.0, 1.0], [-1.0, -2.0], [2.5, -1.9]])),
                      (2, np.matrix([[0.5], [1.6], [-1.4]]))]))
    ])

    scalings = OrderedDict([
        ('O', OrderedDict([('intercept', -2.3), ('slope', 4.5)])),
        ('Pd', OrderedDict([('intercept', 1.6), ('slope', 2.5)])),
        ('Cu', OrderedDict([('intercept', -0.3), ('slope', -0.5)]))
    ])

    ###########################################################################
    # Correct values

    correct_cost = 8004.292841472513
    correct_energy_rmse = 43.736001940333836
    correct_force_rmse = 137.4099476110887
    correct_der_cost_fxn = [
        0.0814166874813534, 0.03231235582927526, 0.04388650395741291,
        0.017417514465933048, 0.0284312765975806, 0.011283700608821421,
        0.09416957265766414, -0.12322258890997816, 0.12679918754162384,
        63.5396007548815, 0.016247700195771732, -86.62639558745185,
        -0.017777528287386473, 86.22415217678898, 0.017745913074805372,
        104.58358033260711, -96.7328020983672, -99.09843648854351,
        -8.302880631971407, -1.2590007162073242, 8.3028773468822,
        1.258759884181224, -8.302866610677315, -1.2563833805673688,
        28.324298392677846, 28.09315509472324, -29.378744559315365,
        -11.247473567051799, 11.119951466671642, -87.08582317485761,
        -20.93948523898559, -125.73267675714658, -35.13852440758523
    ]

    ###########################################################################
    # Testing pure-python and fortran versions of Gaussian-neural on different
    # number of processes

    for global_search in [None, 'SA']:
        for fortran in [False, True]:
            for extend_variables in [False, True]:
                for data_format in ['db', 'json']:
                    for save_memory in [False]:
                        for cores in range(1, 5):

                            string = 'CuOPdbp/2/%s-%s-%s-%s-%s-%i'
                            label = string % (global_search, fortran,
                                              extend_variables, data_format,
                                              save_memory, cores)

                            if global_search is 'SA':
                                gs = \
                                    SimulatedAnnealing(temperature=10, steps=5)
                            elif global_search is None:
                                gs = None

                            print label

                            calc = Amp(descriptor=Gaussian(cutoff=4., Gs=Gs),
                                       regression=NeuralNetwork(
                                           hiddenlayers=hiddenlayers,
                                           weights=weights,
                                           scalings=scalings,
                                           activation='tanh',
                                       ),
                                       fortran=fortran,
                                       label=label)

                            calc.train(images=images,
                                       energy_goal=10.**10.,
                                       force_goal=10.**10,
                                       force_coefficient=0.04,
                                       cores=cores,
                                       data_format=data_format,
                                       save_memory=save_memory,
                                       global_search=gs,
                                       extend_variables=extend_variables)

                            assert (abs(calc.cost_function - correct_cost) <
                                    10.**(-7.)), \
                                'The calculated value of cost function is \
                                wrong!'

                            assert (abs(calc.energy_per_atom_rmse -
                                        correct_energy_rmse) < 10.**(-10.)), \
                                'The calculated value of energy per atom RMSE \
                            is wrong!'

                            assert (abs(calc.force_rmse - correct_force_rmse) <
                                    10 ** (-8.)), \
                                'The calculated value of force RMSE is wrong!'

                            for _ in range(len(correct_der_cost_fxn)):
                                assert(abs(calc.der_variables_cost_function[
                                    _] -
                                    correct_der_cost_fxn[_]) < 10 ** (-8)), \
                                    'The calculated value of cost function \
                                   derivative is wrong!'

                            dblabel = label
                            secondlabel = '_' + label

                            calc = Amp(descriptor=Gaussian(cutoff=4., Gs=Gs),
                                       regression=NeuralNetwork(
                                           hiddenlayers=hiddenlayers,
                                           weights=weights,
                                           scalings=scalings,
                                           activation='tanh',
                                       ),
                                       fortran=fortran,
                                       label=secondlabel,
                                       dblabel=dblabel)

                            calc.train(images=images,
                                       energy_goal=10.**10.,
                                       force_goal=10.**10,
                                       force_coefficient=0.04,
                                       cores=cores,
                                       data_format=data_format,
                                       save_memory=save_memory,
                                       global_search=gs,
                                       extend_variables=extend_variables)

                            assert (abs(calc.cost_function - correct_cost) <
                                    10.**(-7.)), \
                                'The calculated value of cost function is \
                                wrong!'

                            assert (abs(calc.energy_per_atom_rmse -
                                        correct_energy_rmse) < 10.**(-10.)), \
                                'The calculated value of energy per atom RMSE \
                            is wrong!'

                            assert (abs(calc.force_rmse - correct_force_rmse) <
                                    10 ** (-8.)), \
                                'The calculated value of force RMSE is wrong!'

                            for _ in range(len(correct_der_cost_fxn)):
                                assert(abs(calc.der_variables_cost_function[
                                    _] -
                                    correct_der_cost_fxn[_] < 10 ** (-8))), \
                                    'The calculated value of cost function \
Example #2
0
def non_periodic_0th_bfgs_step_test():

    pwd = os.getcwd()
    os.mkdir(os.path.join(pwd, 'CuOPdbp'))
    os.mkdir(os.path.join(pwd, '_CuOPdbp'))
    os.mkdir(os.path.join(pwd, 'CuOPdbp/0'))
    os.mkdir(os.path.join(pwd, '_CuOPdbp/0'))
    os.mkdir(os.path.join(pwd, 'CuOPdbp/1'))
    os.mkdir(os.path.join(pwd, '_CuOPdbp/1'))
    os.mkdir(os.path.join(pwd, 'CuOPdbp/2'))
    os.mkdir(os.path.join(pwd, '_CuOPdbp/2'))

    ###########################################################################
    # Making the list of periodic image

    images = [
        Atoms(symbols='PdOPd2',
              pbc=np.array([False, False, False], dtype=bool),
              cell=np.array([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]),
              positions=np.array([[0., 0., 0.], [0., 2., 0.], [0., 0., 3.],
                                  [1., 0., 0.]])),
        Atoms(symbols='PdOPd2',
              pbc=np.array([False, False, False], dtype=bool),
              cell=np.array([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]),
              positions=np.array([[0., 1., 0.], [1., 2., 1.], [-1., 1., 2.],
                                  [1., 3., 2.]])),
        Atoms(symbols='PdO',
              pbc=np.array([False, False, False], dtype=bool),
              cell=np.array([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]),
              positions=np.array([[2., 1., -1.], [1., 2., 1.]])),
        Atoms(symbols='Pd2O',
              pbc=np.array([False, False, False], dtype=bool),
              cell=np.array([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]),
              positions=np.array([[-2., -1., -1.], [1., 2., 1.], [3., 4.,
                                                                  4.]])),
        Atoms(symbols='Cu',
              pbc=np.array([False, False, False], dtype=bool),
              cell=np.array([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]),
              positions=np.array([[0., 0., 0.]]))
    ]

    for image in images:
        image.set_calculator(EMT())
        image.get_potential_energy(apply_constraint=False)
        image.get_forces(apply_constraint=False)

    ###########################################################################
    # Parameters

    Gs = {
        'O': [{
            'type': 'G2',
            'element': 'Pd',
            'eta': 0.8
        }, {
            'type': 'G4',
            'elements': ['Pd', 'Pd'],
            'eta': 0.2,
            'gamma': 0.3,
            'zeta': 1
        }, {
            'type': 'G4',
            'elements': ['O', 'Pd'],
            'eta': 0.3,
            'gamma': 0.6,
            'zeta': 0.5
        }],
        'Pd': [{
            'type': 'G2',
            'element': 'Pd',
            'eta': 0.2
        }, {
            'type': 'G4',
            'elements': ['Pd', 'Pd'],
            'eta': 0.9,
            'gamma': 0.75,
            'zeta': 1.5
        }, {
            'type': 'G4',
            'elements': ['O', 'Pd'],
            'eta': 0.4,
            'gamma': 0.3,
            'zeta': 4
        }],
        'Cu': [{
            'type': 'G2',
            'element': 'Cu',
            'eta': 0.8
        }, {
            'type': 'G4',
            'elements': ['Cu', 'O'],
            'eta': 0.2,
            'gamma': 0.3,
            'zeta': 1
        }, {
            'type': 'G4',
            'elements': ['Cu', 'Cu'],
            'eta': 0.3,
            'gamma': 0.6,
            'zeta': 0.5
        }]
    }

    hiddenlayers = {'O': (2), 'Pd': (2), 'Cu': (2)}

    weights = OrderedDict([
        ('O',
         OrderedDict([(1,
                       np.matrix([[-2.0, 6.0], [3.0, -3.0], [1.5, -0.9],
                                  [-2.5, -1.5]])),
                      (2, np.matrix([[5.5], [3.6], [1.4]]))])),
        ('Pd',
         OrderedDict([(1,
                       np.matrix([[-1.0, 3.0], [2.0, 4.2], [1.0, -0.7],
                                  [-3.0, 2.0]])),
                      (2, np.matrix([[4.0], [0.5], [3.0]]))])),
        ('Cu',
         OrderedDict([(1,
                       np.matrix([[0.0, 1.0], [-1.0, -2.0], [2.5, -1.9],
                                  [-3.5, 0.5]])),
                      (2, np.matrix([[0.5], [1.6], [-1.4]]))]))
    ])

    scalings = OrderedDict([
        ('O', OrderedDict([('intercept', -2.3), ('slope', 4.5)])),
        ('Pd', OrderedDict([('intercept', 1.6), ('slope', 2.5)])),
        ('Cu', OrderedDict([('intercept', -0.3), ('slope', -0.5)]))
    ])

    ###########################################################################
    # Correct values

    correct_cost = 7144.810783950215
    correct_energy_rmse = 24.318837496017185
    correct_force_rmse = 144.70282475062052
    correct_der_cost_fxn = [
        0, 0, 0, 0, 0, 0, 0.01374139170953901, 0.36318423812749656,
        0.028312691567496464, 0.6012336354445753, 0.9659002689921986,
        -1.2897770059416218, -0.5718960935176884, -2.6425667221503035,
        -1.1960399246712894, 0, 0, -2.7256379713943852, -0.9080181026559658,
        -0.7739948323247023, -0.2915789426043727, -2.05998290443513,
        -0.6156374289747903, -0.0060865174621348985, -0.8296785483640939,
        0.0008092646748983969, 0.041613027034688874, 0.003426469079592851,
        -0.9578004568876517, -0.006281929608090211, -0.28835884773094056,
        -4.2457774110285245, -4.317412094174614, -8.02385959091948,
        -3.240512651984099, -27.289862194996896, -26.8177742762254,
        -82.45107056053345, -80.6816768350809
    ]

    ###########################################################################
    # Testing pure-python and fortran versions of Gaussian-neural on different
    # number of processes

    for global_search in [None, 'SA']:
        for fortran in [False, True]:
            for extend_variables in [False, True]:
                for data_format in ['db', 'json']:
                    for save_memory in [False]:
                        for cores in range(1, 7):

                            string = 'CuOPdbp/0/%s-%s-%s-%s-%s-%i'
                            label = string % (global_search, fortran,
                                              extend_variables, data_format,
                                              save_memory, cores)

                            if global_search is 'SA':
                                gs = \
                                    SimulatedAnnealing(temperature=10, steps=5)
                            elif global_search is None:
                                gs = None

                            print label

                            calc = Amp(descriptor=Gaussian(cutoff=6.5, Gs=Gs),
                                       regression=NeuralNetwork(
                                           hiddenlayers=hiddenlayers,
                                           weights=weights,
                                           scalings=scalings,
                                           activation='sigmoid',
                                       ),
                                       fortran=fortran,
                                       label=label)

                            calc.train(images=images,
                                       energy_goal=10.**10.,
                                       force_goal=10.**10.,
                                       force_coefficient=0.04,
                                       cores=cores,
                                       data_format=data_format,
                                       save_memory=save_memory,
                                       global_search=gs,
                                       extend_variables=extend_variables)

                            assert (abs(calc.cost_function - correct_cost) <
                                    10.**(-5.)), \
                                'The calculated value of cost function is \
                                wrong!'

                            assert (abs(calc.energy_per_atom_rmse -
                                        correct_energy_rmse) <
                                    10.**(-10.)), \
                                'The calculated value of energy per atom RMSE \
                                is wrong!'

                            assert (abs(calc.force_rmse - correct_force_rmse) <
                                    10 ** (-7)), \
                                'The calculated value of force RMSE is wrong!'

                            for _ in range(len(correct_der_cost_fxn)):

                                assert(abs(calc.der_variables_cost_function[
                                    _] - correct_der_cost_fxn[_]) <
                                    10 ** (-9)), \
                                    'The calculated value of cost function \
                                derivative is wrong!'

                            dblabel = label
                            secondlabel = '_' + label

                            calc = Amp(descriptor=Gaussian(cutoff=6.5, Gs=Gs),
                                       regression=NeuralNetwork(
                                           hiddenlayers=hiddenlayers,
                                           weights=weights,
                                           scalings=scalings,
                                           activation='sigmoid',
                                       ),
                                       fortran=fortran,
                                       label=secondlabel,
                                       dblabel=dblabel)

                            calc.train(images=images,
                                       energy_goal=10.**10.,
                                       force_goal=10.**10.,
                                       force_coefficient=0.04,
                                       cores=cores,
                                       data_format=data_format,
                                       save_memory=save_memory,
                                       global_search=gs,
                                       extend_variables=extend_variables)

                            assert (abs(calc.cost_function - correct_cost) <
                                    10.**(-5.)), \
                                'The calculated value of cost function is \
                                wrong!'

                            assert (abs(calc.energy_per_atom_rmse -
                                        correct_energy_rmse) <
                                    10.**(-10.)), \
                                'The calculated value of energy per atom RMSE \
                                is wrong!'

                            assert (abs(calc.force_rmse - correct_force_rmse) <
                                    10 ** (-7)), \
                                'The calculated value of force RMSE is wrong!'

                            for _ in range(len(correct_der_cost_fxn)):
                                assert(abs(calc.der_variables_cost_function[
                                    _] - correct_der_cost_fxn[_] <
                                    10 ** (-9))), \
                                    'The calculated value of cost function \
Example #3
0
def test():

    pwd = os.getcwd()
    os.mkdir(os.path.join(pwd, 'CuOPdnone'))
    os.mkdir(os.path.join(pwd, '_CuOPdnone'))

    ###########################################################################
    # Parameters

    weights = OrderedDict([(1,
                            np.array([[1., 2.5], [0., 1.5], [0.,
                                                             -1.5], [3., 9.],
                                      [1., -2.5], [2., 3.], [2.,
                                                             2.5], [3., 0.],
                                      [-3.5, 1.], [5., 3.], [-2., 2.5],
                                      [-4., 4.], [0., 0.]])),
                           (2, np.array([[1.], [2.], [0.]])),
                           (3, np.array([[3.5], [0.]]))])

    scalings = OrderedDict([('intercept', 3.), ('slope', 2.)])

    images = generate_images()

    ###########################################################################
    # Testing pure-python and fortran versions of Gaussian-neural on different
    # number of processes

    for global_search in [None, 'SA']:
        for fortran in [False, True]:
            for extend_variables in [False, True]:
                for data_format in ['db', 'json']:
                    for save_memory in [False]:
                        for cores in range(1, 7):

                            string = 'CuOPdnone/%s-%s-%s-%s-%s-%i'
                            label = string % (global_search, fortran,
                                              extend_variables, data_format,
                                              save_memory, cores)

                            if global_search is 'SA':
                                gs = \
                                    SimulatedAnnealing(temperature=10, steps=5)
                            elif global_search is None:
                                gs = None

                            print label

                            calc = Amp(
                                descriptor=None,
                                regression=NeuralNetwork(
                                    hiddenlayers=(2, 1),
                                    activation='tanh',
                                    weights=weights,
                                    scalings=scalings,
                                ),
                                fortran=fortran,
                                label=label,
                            )

                            calc.train(images=images,
                                       energy_goal=10.**10.,
                                       force_goal=10.**10.,
                                       force_coefficient=0.04,
                                       cores=cores,
                                       data_format=data_format,
                                       save_memory=save_memory,
                                       global_search=gs,
                                       extend_variables=extend_variables)

                            # Check for consistency between the two models
                            assert (abs(calc.cost_function - cost_function) <
                                    10.**(-5.)), \
                                'The calculated value of cost function is \
                                wrong!'
                            assert (abs(calc.energy_per_atom_rmse -
                                        energy_rmse) <
                                    10.**(-5.)), \
                                'The calculated value of energy per atom RMSE \
                            is wrong!'
                            assert (abs(calc.force_rmse - force_rmse) <
                                    10 ** (-5)), \
                                'The calculated value of force RMSE is wrong!'

                            dblabel = label
                            secondlabel = '_' + label

                            calc = Amp(descriptor=None,
                                       regression=NeuralNetwork(
                                           hiddenlayers=(2, 1),
                                           activation='tanh',
                                           weights=weights,
                                           scalings=scalings,
                                       ),
                                       fortran=fortran,
                                       label=secondlabel,
                                       dblabel=dblabel)

                            calc.train(images=images,
                                       energy_goal=10.**10.,
                                       force_goal=10.**10.,
                                       force_coefficient=0.04,
                                       cores=cores,
                                       data_format=data_format,
                                       save_memory=save_memory,
                                       global_search=gs,
                                       extend_variables=extend_variables)

                            # Check for consistency between the two models
                            assert (abs(calc.cost_function - cost_function) <
                                    10.**(-5.)), \
                                'The calculated value of cost function is \
                                wrong!'
                            assert (abs(calc.energy_per_atom_rmse -
                                        energy_rmse) <
                                    10.**(-5.)), \
                                'The calculated value of energy per atom RMSE \
                            is wrong!'
                            assert (abs(calc.force_rmse - force_rmse) <
                                    10 ** (-5)), \
                                'The calculated value of force RMSE is wrong!'
Example #4
0
#!/usr/bin/env python
from amp import Amp
from amp.descriptor import Gaussian
from amp.regression import NeuralNetwork
from ase.db import connect
from amp import SimulatedAnnealing

db = connect('../../../database/master.db')

images = []
for d in db.select('train_set=True'):
    atoms = db.get_atoms(d.id)
    del atoms.constraints
    images += [atoms]

for n in [2, 3]:

    calc = Amp(label='./',
               dblabel='../../',
               descriptor=Gaussian(cutoff=6.5),
               regression=NeuralNetwork(hiddenlayers=(2, n)))

    calc.train(images=images,
               data_format='db',
               cores=4,
               energy_goal=1e-2,
               force_goal=1e-1,
               global_search=SimulatedAnnealing(temperature=70, steps=50),
               extend_variables=False)
Example #5
0
def test():

    images = make_training_images()

    for descriptor in [None, Gaussian()]:
        for global_search in [
                None, SimulatedAnnealing(temperature=10, steps=5)
        ]:
            for data_format in ['json', 'db']:
                for save_memory in [
                        False,
                ]:
                    for fortran in [False, True]:
                        for cores in range(1, 4):

                            print(descriptor, global_search, data_format,
                                  save_memory, fortran, cores)

                            pwd = os.getcwd()
                            testdir = 'read_write_test'
                            os.mkdir(testdir)
                            os.chdir(testdir)

                            regression = NeuralNetwork(hiddenlayers=(
                                5,
                                5,
                            ))

                            calc = Amp(
                                label='calc',
                                descriptor=descriptor,
                                regression=regression,
                                fortran=fortran,
                            )

                            # Should start with new variables
                            calc.train(
                                images,
                                energy_goal=0.01,
                                force_goal=10.,
                                global_search=global_search,
                                extend_variables=True,
                                data_format=data_format,
                                save_memory=save_memory,
                                cores=cores,
                            )

                            # Test that we cannot overwrite. (Strange code
                            # here because we *want* it to raise an
                            # exception...)
                            try:
                                calc.train(
                                    images,
                                    energy_goal=0.01,
                                    force_goal=10.,
                                    global_search=global_search,
                                    extend_variables=True,
                                    data_format=data_format,
                                    save_memory=save_memory,
                                    cores=cores,
                                )
                            except IOError:
                                pass
                            else:
                                raise RuntimeError(
                                    'Code allowed to overwrite!')

                            # Test that we can manually overwrite.
                            # Should start with existing variables
                            calc.train(
                                images,
                                energy_goal=0.01,
                                force_goal=10.,
                                global_search=global_search,
                                extend_variables=True,
                                data_format=data_format,
                                save_memory=save_memory,
                                overwrite=True,
                                cores=cores,
                            )

                            label = 'testdir'
                            if not os.path.exists(label):
                                os.mkdir(label)

                            # New directory calculator.
                            calc = Amp(
                                label='testdir/calc',
                                descriptor=descriptor,
                                regression=regression,
                                fortran=fortran,
                            )

                            # Should start with new variables
                            calc.train(
                                images,
                                energy_goal=0.01,
                                force_goal=10.,
                                global_search=global_search,
                                extend_variables=True,
                                data_format=data_format,
                                save_memory=save_memory,
                                cores=cores,
                            )

                            # Open existing, save under new name.
                            calc = Amp(
                                load='calc',
                                label='calc2',
                                descriptor=descriptor,
                                regression=regression,
                                fortran=fortran,
                            )

                            # Should start with existing variables
                            calc.train(
                                images,
                                energy_goal=0.01,
                                force_goal=10.,
                                global_search=global_search,
                                extend_variables=True,
                                data_format=data_format,
                                save_memory=save_memory,
                                cores=cores,
                            )

                            label = 'calc_new'
                            if not os.path.exists(label):
                                os.mkdir(label)

                            # Change label and re-train
                            calc.set_label('calc_new/calc')
                            # Should start with existing variables
                            calc.train(
                                images,
                                energy_goal=0.01,
                                force_goal=10.,
                                global_search=global_search,
                                extend_variables=True,
                                data_format=data_format,
                                save_memory=save_memory,
                                cores=cores,
                            )

                            # Open existing without specifying new name.
                            calc = Amp(
                                load='calc',
                                descriptor=descriptor,
                                regression=regression,
                                fortran=fortran,
                            )

                            # Should start with existing variables
                            calc.train(
                                images,
                                energy_goal=0.01,
                                force_goal=10.,
                                global_search=global_search,
                                extend_variables=True,
                                data_format=data_format,
                                save_memory=save_memory,
                                cores=cores,
                            )

                            os.chdir(pwd)
                            shutil.rmtree(testdir, ignore_errors=True)
                            del calc, regression
Example #6
0
def test():

    pwd = os.getcwd()
    os.mkdir(os.path.join(pwd, 'consistnone'))

    images = generate_images()

    count = 0
    for global_search in [None, 'SA']:
        for fortran in [False, True]:
            for extend_variables in [False, True]:
                for data_format in ['db', 'json']:
                    for save_memory in [False]:
                        for cores in range(1, 7):

                            string = 'consistnone/%s-%s-%s-%s-%s-%i'
                            label = string % (global_search, fortran,
                                              extend_variables, data_format,
                                              save_memory, cores)

                            if global_search is 'SA':
                                global_search = \
                                    SimulatedAnnealing(temperature=10, steps=5)

                            calc = Amp(descriptor=None,
                                       regression=NeuralNetwork(
                                           hiddenlayers=(2, 1),
                                           activation='tanh',
                                           weights=weights,
                                           scalings=scalings,
                                       ),
                                       fortran=fortran,
                                       label=label)

                            calc.train(images=images,
                                       energy_goal=10.**10.,
                                       force_goal=10.**10.,
                                       cores=cores,
                                       data_format=data_format,
                                       save_memory=save_memory,
                                       global_search=global_search,
                                       extend_variables=extend_variables)

                            if count == 0:
                                reference_cost_function = calc.cost_function
                                reference_energy_rmse = \
                                    calc.energy_per_atom_rmse
                                reference_force_rmse = calc.force_rmse
                                ref_cost_fxn_variable_derivatives = \
                                    calc.der_variables_cost_function
                            else:
                                assert (abs(calc.cost_function -
                                            reference_cost_function) <
                                        10.**(-10.)), \
                                    '''Cost function value for %r fortran, %r
                                data format, %r save_memory, and %i cores is
                                not consistent with the value of python version
                                on single core.''' % (fortran, data_format,
                                                      save_memory, cores)

                            assert (abs(calc.energy_per_atom_rmse -
                                        reference_energy_rmse) <
                                    10.**(-10.)), \
                                '''Energy rmse value for %r fortran, %r data
                            format, %r save_memory, and %i cores is not
                            consistent with the value of python version on
                            single core.''' % (fortran, data_format,
                                               save_memory, cores)

                            assert (abs(calc.force_rmse -
                                        reference_force_rmse) < 10.**(-10.)), \
                                '''Force rmse value for %r fortran, %r data
                            format, %r save_memory, and %i cores is not
                            consistent with the value of python version on
                            single core.''' % (fortran, data_format,
                                               save_memory, cores)

                            for _ in range(
                                    len(ref_cost_fxn_variable_derivatives)):
                                assert (calc.der_variables_cost_function[_] -
                                        ref_cost_fxn_variable_derivatives[_] <
                                        10.**(-10.))
                                '''Derivative of the cost function for %r
                                fortran, %r data format, %r save_memory, and %i
                                cores is not consistent with the value of
                                python version on single
                                core. ''' % (fortran, data_format, save_memory,
                                             cores)

                            count = count + 1