def benchmarking(self, optd): if optd['submit_cluster']: # Pickle dictionary so it can be opened by the job to get the parameters ample_util.save_amoptd(optd) script = benchmark_util.cluster_script(optd) workers_util.run_scripts( job_scripts=[script], monitor=monitor, nproc=optd['nproc'], job_time=43200, job_name='benchmark', submit_cluster=optd['submit_cluster'], submit_qtype=optd['submit_qtype'], submit_queue=optd['submit_queue'], submit_pe_lsf=optd['submit_pe_lsf'], submit_pe_sge=optd['submit_pe_sge'], submit_array=optd['submit_array'], submit_max_array=optd['submit_max_array'], ) # queue finished so unpickle results optd.update(ample_util.read_amoptd(optd['results_path'])) else: benchmark_util.analyse(optd) ample_util.save_amoptd(optd) return
def benchmarking(self, optd): if optd['submit_qtype'] != 'local': # Pickle dictionary so it can be opened by the job to get the parameters ample_util.save_amoptd(optd) script = benchmark_util.cluster_script(optd) with TaskFactory( optd['submit_qtype'], script, cwd=optd['work_dir'], environment=optd['submit_pe'], run_time=43200, name='benchmark', nprocesses=optd['nproc'], max_array_size=optd['submit_max_array'], queue=optd['submit_queue'], shell="/bin/bash", ) as task: task.run() task.wait(interval=5, monitor_f=monitor) # queue finished so unpickle results optd.update(ample_util.read_amoptd(optd['results_path'])) else: benchmark_util.analyse(optd) ample_util.save_amoptd(optd) return
def test_benchmark(self): pklfile="/home/jmht/ample-dev1/examples/toxd-example/ROSETTA_MR_0/resultsd.pkl" with open(pklfile) as f: d=pickle.load(f) bd="/home/jmht/ample-dev1/python/foo" if not os.path.isdir(bd): os.mkdir(bd) d['benchmark_dir']=bd benchmark_util.analyse(d)
def benchmarking(self, optd): if optd['submit_cluster']: # Pickle dictionary so it can be opened by the job to get the parameters ample_util.save_amoptd(optd) script = benchmark_util.cluster_script(optd) workers_util.run_scripts( job_scripts=[script], monitor=monitor, nproc=optd['nproc'], job_time=43200, job_name='benchmark', submit_cluster=optd['submit_cluster'], submit_qtype=optd['submit_qtype'], submit_queue=optd['submit_queue'], submit_pe_lsf=optd['submit_pe_lsf'], submit_pe_sge=optd['submit_pe_sge'], submit_array=optd['submit_array'], submit_max_array=optd['submit_max_array']) # queue finished so unpickle results optd.update(ample_util.read_amoptd(optd['results_path'])) else: benchmark_util.analyse(optd) ample_util.save_amoptd(optd) return