Example #1
0
 def test_sample_11(self):
     code = [3, 12, 6, 12, 15, 1, 13, 14, 13, 4, 13, 99, -1, 0, 1, 9]
     amplifier = Amplifier(code)
     status, signal = amplifier.execute(1)
     self.assertEqual(status, 'OUTPUT')
     self.assertEqual(signal, 1)
     status, signal = amplifier.execute()
     self.assertEqual(status, 'HALT')
     self.assertEqual(signal, None)
Example #2
0
 def test_wait(self):
     code = [3, 3, 99, 0]
     amplifier = Amplifier(code)
     status, signal = amplifier.execute()
     self.assertEqual(status, 'WAITING')
     self.assertEqual(signal, None)
     status, signal = amplifier.execute(10)
     self.assertEqual(status, 'HALT')
     self.assertEqual(signal, None)
Example #3
0
 def test_io(self):
     code = [3, 9, 1002, 9, 2, 10, 4, 10, 99, 0, 0]
     amplifier = Amplifier(code)
     status, signal = amplifier.execute(3)
     self.assertEqual(status, 'OUTPUT')
     self.assertEqual(signal, 6)
     status, signal = amplifier.execute()
     self.assertEqual(status, 'HALT')
     self.assertEqual(signal, None)
Example #4
0
 def test_sample_9(self):
     code = [3, 3, 1107, -1, 8, 3, 4, 3, 99]
     amplifier = Amplifier(code)
     status, signal = amplifier.execute(0)
     self.assertEqual(status, 'OUTPUT')
     self.assertEqual(signal, 1)
     status, signal = amplifier.execute()
     self.assertEqual(status, 'HALT')
     self.assertEqual(signal, None)
Example #5
0
def read_in_raw(args):
    log = logging.getLogger('characterize')
    # Check that the arguments are filled
    if args.specid:
        args.specid = "%03d" % int(args.specid)
    else:
        msg = 'No SPECID was provided.'
        log.error(msg)

    labels = ['dir_date', 'dir_obsid', 'dir_expnum']
    observations = ['bia', 'drk', 'pxf', 'ptc', 'flt']
    for obs in observations:
        amp_list = []
        for label in labels[:2]:
            getattr(args, obs + label)
            if getattr(args, obs + label) is None:
                msg = '%s%s was not provided' % (obs, label)
                log.error(msg)
            else:
                setattr(args, obs + label,
                        getattr(args, obs + label).replace(" ", "").split(','))
        if getattr(args, obs + labels[2]) is not None:
            setattr(args, obs + labels[2],
                    getattr(args, obs + labels[2]).replace(" ", "").split(','))
        for date in getattr(args, obs + labels[0]):
            for obsid in getattr(args, obs + labels[1]):
                if getattr(args, obs + labels[2]) is not None:
                    for expnum in getattr(args, obs + labels[2]):
                        folder = op.join(
                            date, args.instr,
                            "{:s}{:07d}".format(args.instr, int(obsid)),
                            "exp{:02d}".format(int(expnum)), args.instr)
                        files = sorted(
                            glob.glob(op.join(args.rootdir, folder, '*')))
                        for fn in files:
                            amp_list.append(Amplifier(fn, '', name=obs))
                            amp_list[-1].subtract_overscan()
                            amp_list[-1].trim_image()
                else:
                    folder = op.join(
                        date, args.instr,
                        "{:s}{:07d}".format(args.instr, int(obsid)))
                    files = sorted(
                        glob.glob(
                            op.join(args.rootdir, folder, '*', args.instr,
                                    '*')))
                    for fn in files:
                        amp_list.append(Amplifier(fn, '', name=obs))
                        amp_list[-1].subtract_overscan()
                        amp_list[-1].trim_image()
        setattr(args, obs + '_list', amp_list)

    return args
Example #6
0
def main():
    text_input = get_raw_input()
    amplifier_controller_software = [int(x) for x in text_input.split(',')]
    phase_settings = [5, 6, 7, 8, 9]

    amplifiers = []
    for _ in range(len(phase_settings)):
        amplifiers.append(Amplifier(amplifier_controller_software))
    for n in range(len(amplifiers) - 1):
        amplifiers[n].next_amplifier = amplifiers[n + 1]
    amplifiers[-1].next_amplifier = amplifiers[0]

    outputs = []
    for phase_setting_sequence in get_all_arrangements(phase_settings):
        for i in range(len(phase_setting_sequence)):
            amplifiers[i].reset()
            amplifiers[i].add_input(phase_setting_sequence[i])
        
        amplifiers[0].add_input(0)
        while not amplifiers[-1].finished:
            for amplifier in amplifiers:
                amplifier.amplify_till_halt()
        
        outputs.append(amplifiers[-1].last_output)

    print('Max thruster signal:', max(outputs))
Example #7
0
def initialize(phase_sequence, code):
    """Return amplifiers initialized according to phase sequence.

    Assumes that upon initialization, amplifiers will have no output.
    """
    amplifiers = [Amplifier(code) for _ in range(5)]

    for amp, phase in zip(amplifiers, phase_sequence):
        amp.execute(phase)

    return amplifiers
Example #8
0
def main(file):
    lst = [int(item) for item in file.read().split(',')]
    best = {"permutation": None, "output": 0}
    for permutation in generatePhasePermutation(5, [0, 1, 2, 3, 4]):
        amplifiers = [Amplifier(phase) for phase in permutation]
        io = 0
        for amplifier in amplifiers:
            io = amplifier.process(lst, io)
        if (best['output'] < io):
            best['output'] = io
            best['permutation'] = permutation
    print('best:', best['permutation'], best['output'])
Example #9
0
	def __init__(
		self, freq=440.0, level=1.0, phase=0.0, feedback=0, wave_type='sine', 
		fm_type='DX', gate=Gate([0.0]), key_in=None
	):
		Oscillator.__init__(self, key_in)

		self.freq = freq				#frequency

		self.mixer = Mixer()			#mixer to add modulators' outputs

		#sound generator
		if fm_type == 'LinearFM':			
			self.generator = LinearFMGenerator(
				freq, level, phase, wave_type, self.mixer, key_in
			)
		elif fm_type == 'DX':
			self.generator = DXGenerator(
				freq, level, phase, wave_type, self.mixer, key_in
			)

		self.eg = ADSR(input=gate)		#envelope generator

		#amplifier
		self.amp = Amplifier(input=self.generator, mod=self.eg)
def main():
    amp = Amplifier("Top-O-Line-Amplifier")
    tuner = Tuner("Top-O-Line AM/FM Tuner", amp)
    dvd_player = DvdPlayer("Top-O-Line DVD Player", amp)
    cd_player = CDPlayer("Top-O-Line CD Player", amp)
    projector = Projector("Top-O-Line Projector", dvd_player)
    lights = TheaterLights("Theater Ceiling Lights")
    screen = Screen("Theater Screen")
    popper = PopcornPopper("Popcorn Popper")

    home_theater = HomeTheaterFacade(amp, tuner, dvd_player, cd_player,
                                     projector, screen, lights, popper)
    home_theater.watch_movie("Lord of the Rings")
    print()
    home_theater.end_movie()
    print()
Example #11
0
def run_iteration(iteration):
    output_signal = 0
    input_signal = 0
    amplifiers = {}

    while True:
        for ampNumber in range(1, 6):
            if ampNumber not in amplifiers:
                amplifiers[ampNumber] = Amplifier(example_opcodes)
                input = [iteration[ampNumber - 1], input_signal]
            else:
                input = [input_signal]
            current_amplifier = amplifiers[ampNumber]
            output_signal = current_amplifier.run_int_code(input)
            # print("amplifier " +  str(ampNumber) + " gave output: " + str(output_signal))
            input_signal = output_signal
            if (current_amplifier.halted == True):
                return input
Example #12
0
def main():
    filename = "input.txt"
    feedback = False
    if len(sys.argv) > 1:
        filename = sys.argv[1]
    if len(sys.argv) > 2 and sys.argv[2] == "--feedback":
        feedback = True
    f = open(filename)
    s = f.readline()
    memory = list(map(int, s.split(",")))

    maxSignal = 0
    result = None
    signal = 0
    permutations = None
    if not feedback:
        permutations = itertools.permutations(range(5), 5)
    else:
        permutations = itertools.permutations(range(5, 10), 5)

    for perm in permutations:
        signal = 0
        amplifiers = []
        for i in range(len(perm)):
            amplifiers.append(Amplifier("{}".format(i), memory, perm[i]))
        
        running = True
        while running:
            terminated = True
            for a in amplifiers:
                out = a.amplify(signal)
                if out != None:
                    signal = out
                terminated &= a.terminated()
            running = not terminated


        if maxSignal < signal:
            maxSignal = signal
            result = perm

    print("Result signal: {}".format(maxSignal))
    print("Combination: {}".format(result))
Example #13
0
class FMOperator(Oscillator):
	"""A class to represent an FM operator"""

	def __init__(
		self, freq=440.0, level=1.0, phase=0.0, feedback=0, wave_type='sine', 
		fm_type='DX', gate=Gate([0.0]), key_in=None
	):
		Oscillator.__init__(self, key_in)

		self.freq = freq				#frequency

		self.mixer = Mixer()			#mixer to add modulators' outputs

		#sound generator
		if fm_type == 'LinearFM':			
			self.generator = LinearFMGenerator(
				freq, level, phase, wave_type, self.mixer, key_in
			)
		elif fm_type == 'DX':
			self.generator = DXGenerator(
				freq, level, phase, wave_type, self.mixer, key_in
			)

		self.eg = ADSR(input=gate)		#envelope generator

		#amplifier
		self.amp = Amplifier(input=self.generator, mod=self.eg)

	def add_modulator(self, mod, level=1.0):
		"""Adds a modulator"""
		self.mixer.add_input(mod, level)

	def set_key_in(self, key_in):
		"""Sets key input"""
		self.key_in = key_in
		self.generator.set_key_in(key_in)

	def set_eg_params(self, *args, **kwargs):
		"""Sets parameters of the envelope"""
		self.eg.set_params(*args, **kwargs)

	def set_gate(self, gate):
		"""Sets the gate input"""
		self.eg.set_input(gate)

	def set_keyboard(self, keyboard):
		"""sets key and gate input from a keybord"""
		self.set_key_in(keyboard.key)
		self.set_gate(keyboard.gate)

	def output(self, t, **kwargs):
		"""Returns the value of operators signal in time t"""
		return self.amp.output(t, **kwargs)

	def draw(self, ax, time=None, cycles=1, **kwargs):
		"""
		Draws the shape of the operators output signal along with its 
		modulators and modulators' modulators etc.
		
		If 'time' is not provided, the shape will be drawn for 'cycles' cycles 
		of operators carrier generator
		"""

		#draw the operators output signal
		Oscillator.draw(self, ax, time, cycles, **kwargs)

		#draw modulators' output signals

		if time is None:
			time = cycles / np.float64(self.freq)

		try:
			kwargs['alpha'] *= 0.5
		except KeyError:
			kwargs['alpha'] = 0.5

		self.mixer.draw(ax, time, **kwargs)
Example #14
0
import aoc_download
from intcode_computer import IntCodeComputer
from custom_enums import Opcode
from amplifier import Amplifier
YEAR = 2019
DAY = 7

puzzle_input = aoc_download.aoc.puzzle_input_file(YEAR, DAY)

amp_a = Amplifier(puzzle_input)
amp_b = Amplifier(puzzle_input)
amp_c = Amplifier(puzzle_input)
amp_d = Amplifier(puzzle_input)
amp_e = Amplifier(puzzle_input)

max_output = 0

for phase_a in range(5):

    for phase_b in range(5):
        if phase_b in [phase_a]:
            continue

        for phase_c in range(5):
            if phase_c in [phase_a, phase_b]:
                continue

            for phase_d in range(5):
                if phase_d in [phase_a, phase_b, phase_c]:
                    continue
Example #15
0
from amplifier import Amplifier
from cd_player import CdPlayer
from dvd_player import DvdPlayer
from home_theater_facade import HomeTheaterFacade
from tuner import Tuner

amplifier = Amplifier()
cd = CdPlayer()
dvd = DvdPlayer()
tuner = Tuner()

facade = HomeTheaterFacade(tuner, amplifier, cd, dvd)

facade.watch_movie()
facade.listen_to_cd()
facade.listen_to_radio()
facade.end_radio()
    def __init__(self,
                 topo='cian',
                 link_length=1,
                 span_length=1,
                 channels=None):
        """
        :param topo: topology to be used
        :param link_length: only used when topo='linear
        :param span_length: only used when topo='linear
        :param channels: only used when topo='linear
        """

        # Create a Network object
        self.net = Network()

        if topo == 'cian':
            nodes = []
            # Create the nodes of the network
            self.n1 = Node(1, amplifier=Amplifier(target_gain=9))  # Tx node
            nodes.append(self.n1)
            self.n2 = Node(2,
                           amplifier=Amplifier(target_gain=9))  # in-line node
            nodes.append(self.n2)
            self.n3 = Node(3)  # in-line node
            nodes.append(self.n3)
            self.n4 = Node(4,
                           amplifier=Amplifier(target_gain=18))  # in-line node
            nodes.append(self.n4)
            self.n5 = Node(5,
                           amplifier=Amplifier(target_gain=18))  # in-line node
            nodes.append(self.n5)
            self.n6 = Node(6,
                           amplifier=Amplifier(target_gain=9))  # in-line node
            nodes.append(self.n6)
            self.n7 = Node(7)  # in-line node
            nodes.append(self.n7)
            self.n8 = Node(8)  # Rx node
            nodes.append(self.n8)

            # Add nodes to the network object
            for node in nodes:
                self.net.add_node(node)

            self.links = []
            # Create links of the network
            self.l1 = Link(self.n1, self.n2)
            self.links.append(self.l1)
            self.l2 = Link(self.n2, self.n3)
            self.links.append(self.l2)
            self.l3 = Link(self.n3, self.n4)
            self.links.append(self.l3)
            self.l4 = Link(self.n3, self.n5)
            self.links.append(self.l4)
            self.l5 = Link(self.n5, self.n6)
            self.links.append(self.l5)
            self.l6 = Link(self.n6, self.n7)
            self.links.append(self.l6)
            self.l7 = Link(self.n4, self.n7)
            self.links.append(self.l7)
            self.l8 = Link(self.n7, self.n8)
            self.links.append(self.l8)

            # Add links to the network object
            for link in self.links:
                self.net.add_link(link)

            # Create spans of the links
            fibre_attenuation = 0.22
            self.span_link1 = Span(length=45,
                                   fibre_attenuation=fibre_attenuation)
            self.span_link2 = Span(length=70,
                                   fibre_attenuation=fibre_attenuation)
            self.span_link5 = Span(length=45,
                                   fibre_attenuation=fibre_attenuation)
            self.span_link6 = Span(length=20,
                                   fibre_attenuation=fibre_attenuation)
            self.span_link7 = Span(length=25,
                                   fibre_attenuation=fibre_attenuation)

            # Add spans to the links
            self.net.add_span_to_link(
                self.l1, self.span_link1,
                Amplifier(target_gain=9.9,
                          wavelength_dependent_gain_id='wdg1'))
            self.net.add_span_to_link(
                self.l2, self.span_link2,
                Amplifier(target_gain=15.4,
                          wavelength_dependent_gain_id='wdg2'))
            self.net.add_span_to_link(
                self.l5, self.span_link5,
                Amplifier(target_gain=9.9,
                          wavelength_dependent_gain_id='wdg2'))
            self.net.add_span_to_link(
                self.l6, self.span_link6,
                Amplifier(target_gain=4.4,
                          wavelength_dependent_gain_id='wdg1'))
            self.net.add_span_to_link(
                self.l7, self.span_link7,
                Amplifier(target_gain=5.5,
                          wavelength_dependent_gain_id='wdg2'))

            # Build network
            self.net.build()

            # Create a route to use for transmission
            route = [(self.n1, self.l1), (self.n2, self.l2),
                     (self.n3, self.l4), (self.n5, self.l5),
                     (self.n6, self.l6), (self.n7, self.l8), (self.n8, None)]
            # OpticalSignal index starts from 1
            # Create OpticalSignal instances to sequencially add to transmission
            signals = [
                OpticalSignal(81),
                OpticalSignal(82),
                OpticalSignal(83),
                OpticalSignal(84),
                OpticalSignal(85)
            ]
            # Invoke network function for transmission
            self.net.transmit(self.n1, self.n8, signals, route)

        if topo == 'linear':
            nodes = []
            self.n1 = Node(1, amplifier=Amplifier(target_gain=9))  # Tx node
            nodes.append(self.n1)
            self.n2 = Node(2,
                           amplifier=Amplifier(target_gain=9))  # in-line node
            nodes.append(self.n2)

            for node in nodes:
                self.net.add_node(node)

            links = []
            self.l1 = Link(self.n1, self.n2)
            links.append(self.l1)

            for link in links:
                self.net.add_link(link)

            number_of_spans = link_length / span_length
            fibre_attenuation = 0.22
            self.spans = []
            while number_of_spans > 0:
                span = Span(length=span_length,
                            fibre_attenuation=fibre_attenuation)
                self.net.add_span_to_link(
                    self.l1, span,
                    Amplifier(target_gain=span_length * fibre_attenuation,
                              wavelength_dependent_gain_id='wdg1'))
                self.spans.append(span)
                number_of_spans -= 1
            self.net.build()

            route = [(self.n1, self.l1), (self.n2, None)]
            # OpticalSignal index starts from 1
            signals = []
            for channel in channels:
                signals.append(OpticalSignal(channel))
            self.net.transmit(self.n1, self.n2, signals, route)
def main():
    args = parse_args()
    for spec in args.specid:
        spec_ind_twi = np.where(args.twi_df['Specid'] == spec)[0]
        for amp in config.Amps:
            amp_ind_twi = np.where(args.twi_df['Amp'] == amp)[0]
            twi_sel = np.intersect1d(spec_ind_twi, amp_ind_twi)
            for ind in twi_sel:
                if args.debug:
                    print("Working on Cal for %s, %s" % (spec, amp))
                twi1 = Amplifier(args.twi_df['Files'][ind],
                                 args.twi_df['Output'][ind],
                                 calpath=args.twi_df['Output'][ind],
                                 debug=True,
                                 refit=True,
                                 dark_mult=0.0,
                                 darkpath=args.darkdir,
                                 biaspath=args.biasdir,
                                 virusconfig=args.configdir,
                                 specname=args.specname[amp],
                                 use_pixelflat=(args.pixelflats < 1),
                                 init_lims=args.wvl_dict[amp],
                                 check_fibermodel=True,
                                 check_wave=True,
                                 fsize=args.fsize,
                                 fibmodel_nbins=args.fibmodel_bins,
                                 sigma=args.fibmodel_sig,
                                 power=args.fibmodel_pow)
                twi1.get_trace()
                fname = op.join(
                    args.configdir, 'Fiber_Locations', args.twidir_date[0],
                    'fiber_loc_%s_%s_%s_%s.txt' %
                    (args.twi_df['Specid'][ind], args.twi_df['Ifuslot'][ind],
                     args.twi_df['Ifuid'][ind], amp))
                if len(twi1.fibers) == args.nfibers[amp]:
                    print("The correct number of fibers, %i, were found." %
                          args.nfibers[amp])
                    Y = np.zeros((len(twi1.fibers), 2))
                    col = int(twi1.D * config.frac)
                    for i, fiber in enumerate(twi1.fibers):
                        Y[i, 0] = fiber.trace[col]
                    print("Printing file for fibers.")
                    create_fiber_file(fname, config.frac, Y)
                else:
                    print("Only found %i fibers instead of the expected %i" %
                          (len(twi1.fibers), args.nfibers[amp]))
                    Y = find_missing_fibers(config.frac, twi1)
                    create_fiber_file(fname, config.frac, Y)
                twi2 = Amplifier(args.twi_df['Files'][ind].replace(
                    amp, config.Amp_dict[amp][0]),
                                 args.twi_df['Output'][ind],
                                 calpath=args.twi_df['Output'][ind],
                                 debug=True,
                                 refit=True,
                                 dark_mult=0.0,
                                 darkpath=args.darkdir,
                                 biaspath=args.biasdir,
                                 virusconfig=args.configdir,
                                 specname=args.specname[amp],
                                 use_pixelflat=(args.pixelflats < 1),
                                 init_lims=args.wvl_dict[amp],
                                 check_fibermodel=True,
                                 check_wave=True,
                                 fsize=args.fsize,
                                 fibmodel_nbins=args.fibmodel_bins,
                                 sigma=args.fibmodel_sig,
                                 power=args.fibmodel_pow)
                twi2.get_trace()
                folder = op.join(args.configdir, 'Fiber_Locations',
                                 args.twidir_date[0])
                mkpath(folder)
                fname = op.join(
                    args.configdir, 'Fiber_Locations', args.twidir_date[0],
                    'fiber_loc_%s_%s_%s_%s.txt' %
                    (args.twi_df['Specid'][ind], args.twi_df['Ifuslot'][ind],
                     args.twi_df['Ifuid'][ind], config.Amp_dict[amp][0]))

                if len(twi2.fibers) == args.nfibers[config.Amp_dict[amp][0]]:
                    print("The correct number of fibers, %i, were found." %
                          args.nfibers[config.Amp_dict[amp][0]])
                    Y = np.zeros((len(twi2.fibers), 2))
                    col = int(twi2.D * config.frac)
                    for i, fiber in enumerate(twi2.fibers):
                        Y[i, 0] = fiber.trace[col]
                    print("Printing file for fibers.")
                    create_fiber_file(fname, config.frac, Y)
                else:
                    print("Only found %i fibers instead of the expected %i" %
                          (len(twi2.fibers),
                           args.nfibers[config.Amp_dict[amp][0]]))
                    Y = find_missing_fibers(config.frac, twi2)
                    create_fiber_file(fname, config.frac, Y)
Example #18
0
def custom(args):
    lowfib = int(112 / 4. - 1.)
    midfib = int(112 / 2. - 1.)
    highfib = int(3.* 112. / 4. - 1.)
    trace_list = {"LL":[],"LU":[],"RU":[],"RL":[]}
    amps = {"LL":"LL","LU":"LL","RU":"RU","RL":"RU"}
    for spec in args.specid:
        spec_ind_twi = np.where(args.twi_df['Specid'] == spec)[0]
        spec_ind_sci = np.where(args.sci_df['Specid'] == spec)[0]
        for ind in spec_ind_twi:
            amp = args.twi_df['Amp'][ind]
            AMP = amps[amp]
            twi = Amplifier(args.twi_df['Files'][ind],
                            args.twi_df['Output'][ind],
                            calpath=args.twi_df['Output'][ind], 
                            debug=True, dark_mult=0.0,
                            darkpath=args.darkdir, biaspath=args.biasdir,
                            virusconfig=args.configdir, 
                            specname=args.specname[AMP],
                            use_pixelflat=(args.pixelflats<1),
                            init_lims=args.wvl_dict[AMP], 
                            check_fibermodel=True, check_wave=True,
                            fsize=args.fsize, 
                            fibmodel_nbins=args.fibmodel_bins,
                            sigma=args.fibmodel_sig,
                            power=args.fibmodel_pow,
                            use_trace_ref=args.use_trace_ref)
               
            twi.load_fibers()
            if len(twi.fibers)==0:
                twi.get_trace()
            else:
                if not hasattr(twi.fibers[0],'trace'):        
                    twi.get_trace()
            blue = int(twi.D /4.)
            green = int(twi.D /2.)
            red = int(3.*twi.D /4.)
            trace_list[amp].append(np.array([twi.fibers[lowfib].trace[blue],
                                            twi.fibers[lowfib].trace[green],
                                            twi.fibers[lowfib].trace[red],
                                            twi.fibers[midfib].trace[blue],
                                            twi.fibers[midfib].trace[green],
                                            twi.fibers[midfib].trace[red],
                                            twi.fibers[highfib].trace[blue],
                                            twi.fibers[highfib].trace[green],
                                            twi.fibers[highfib].trace[red]]))
        for ind in spec_ind_sci:
            amp = args.sci_df['Amp'][ind]
            AMP = amps[amp]
            print(args.sci_df['Files'][ind])
            
            sci = Amplifier(args.sci_df['Files'][ind],
                            args.sci_df['Output'][ind],
                            calpath=args.twi_dir, skypath=args.sky_dir,
                            debug=False, refit=True, 
                            dark_mult=args.dark_mult[AMP],
                            darkpath=args.darkdir, biaspath=args.biasdir,
                            virusconfig=args.configdir, 
                            specname=args.specname[AMP],
                            use_pixelflat=(args.pixelflats<1),
                            use_trace_ref=args.use_trace_ref,
                            calculate_shift=False)
            sci.load_fibers()
            if len(sci.fibers)==0:
                sci.get_trace()
            else:
                if not hasattr(sci.fibers[0],'trace'):        
                    sci.get_trace()
            blue = int(sci.D /4.)
            green = int(sci.D /2.)
            red = int(3.*sci.D /4.)
            trace_list[amp].append(np.array([sci.fibers[lowfib].trace[blue],
                                            sci.fibers[lowfib].trace[green],
                                            sci.fibers[lowfib].trace[red],
                                            sci.fibers[midfib].trace[blue],
                                            sci.fibers[midfib].trace[green],
                                            sci.fibers[midfib].trace[red],
                                            sci.fibers[highfib].trace[blue],
                                            sci.fibers[highfib].trace[green],
                                            sci.fibers[highfib].trace[red]]))
    import matplotlib.pyplot as plt
    plt.figure(figsize=(12,12))
    ax1 = plt.axes([0.1,0.1,0.35,0.35])
    ax2 = plt.axes([0.1,0.55,0.35,0.35])
    ax3 = plt.axes([0.55,0.1,0.35,0.35])
    ax4 = plt.axes([0.55,0.55,0.35,0.35])
    amps = ["LL","LU","RU","RL"]
    ax = [ax1,ax2,ax3,ax4]
    for i,amp in enumerate(amps):
        TR = np.array(trace_list[amp])
        avg = biweight_location(TR,axis=(0,))
        print(TR-avg)
        ax[i].plot(TR-avg)
    fn = op.join(args.output, args.scidir_date[0], args.instr, 
                        'trace_%s.png' %args.specid[0])
    plt.savefig(fn,dpi=150)
Example #19
0
def reduce_twighlight(args):
    D = Distortion(op.join(args.configdir, 'DeformerDefaults', 
                                        'mastertrace_twi_027_L.dist'))   
    for spec in args.specid:
        spec_ind_twi = np.where(args.twi_df['Specid'] == spec)[0]
        for amp in config.Amps:
            amp_ind_twi = np.where(args.twi_df['Amp'] == amp)[0]
            twi_sel = np.intersect1d(spec_ind_twi, amp_ind_twi)
            for ind in twi_sel:
                if args.debug:
                    print("Working on Cal for %s, %s" %(spec, amp))                    
                twi1 = Amplifier(args.twi_df['Files'][ind],
                                 args.twi_df['Output'][ind],
                                 calpath=args.twi_df['Output'][ind], 
                                 debug=True, dark_mult=0.0,
                                 darkpath=args.darkdir, biaspath=args.biasdir,
                                 virusconfig=args.configdir, 
                                 specname=args.specname[amp],
                                 use_pixelflat=(args.pixelflats<1),
                                 init_lims=args.wvl_dict[amp], 
                                 check_fibermodel=True, check_wave=True,
                                 fsize=args.fsize, 
                                 fibmodel_nbins=args.fibmodel_bins,
                                 sigma=args.fibmodel_sig,
                                 power=args.fibmodel_pow,
                                 use_trace_ref=args.use_trace_ref,
                                 default_fib = args.default_fib,
                                 wave_nbins = args.wave_nbins)
                #twi1.load_fibers()
                twi1.get_fiber_to_fiber()
                twi1.sky_subtraction()
                twi2 = Amplifier(args.twi_df['Files'][ind].replace(amp, 
                                                      config.Amp_dict[amp][0]),
                                 args.twi_df['Output'][ind],
                                 calpath=args.twi_df['Output'][ind], 
                                 debug=True,  dark_mult=0.0,
                                 darkpath=args.darkdir, biaspath=args.biasdir,
                                 virusconfig=args.configdir, 
                                 specname=args.specname[amp],
                                 use_pixelflat=(args.pixelflats<1),
                                 init_lims=args.wvl_dict[amp], 
                                 check_fibermodel=True, check_wave=True,
                                 fsize=args.fsize, 
                                 fibmodel_nbins=args.fibmodel_bins,
                                 sigma=args.fibmodel_sig,
                                 power=args.fibmodel_pow,
                                 use_trace_ref=args.use_trace_ref,
                                 default_fib = args.default_fib,
                                 wave_nbins = args.wave_nbins)
                #twi2.load_fibers()
                twi2.get_fiber_to_fiber()
                twi2.sky_subtraction()
                image1 = get_model_image(twi1.image, twi1.fibers, 
                                         'fiber_to_fiber', debug=twi1.debug)
                image2 = get_model_image(twi2.image, twi2.fibers, 
                                         'fiber_to_fiber', debug=twi2.debug)
                outname = op.join(args.twi_df['Output'][ind], 
                                  'mastertrace_%s_%s.fits' 
                                  %(args.twi_df['Specid'][ind],
                                    config.Amp_dict[amp][1]))
                make_spectrograph_image(image1, image2, twi1.header, outname)
                outname = op.join(args.twi_df['Output'][ind], 
                                  'mastertwi_%s_%s.fits' 
                                  %(args.twi_df['Specid'][ind],
                                    config.Amp_dict[amp][1]))  
                make_spectrograph_image(twi1.image, twi2.image, 
                                        twi1.header, outname)
                outname = op.join(args.twi_df['Output'][ind], 
                                  'normtwi_%s_%s.fits' 
                                  %(args.twi_df['Specid'][ind],
                                    amp))  
                make_amplifier_image(np.where(
                                 np.isfinite(twi1.skyframe)*(twi1.skyframe!=0),
                                                      twi1.image/twi1.skyframe, 
                                                                         0.0), 
                                     twi1.header, outname)
                outname = op.join(args.twi_df['Output'][ind], 
                                  'normtwi_%s_%s.fits' 
                                  %(args.twi_df['Specid'][ind],
                                    config.Amp_dict[amp][0]))
                make_amplifier_image(np.where(
                                 np.isfinite(twi2.skyframe)*(twi2.skyframe!=0),
                                                      twi2.image/twi2.skyframe, 
                                                                         0.0), 
                                     twi2.header, outname)
                D = recalculate_dist_coeff(D, twi1, twi2)
                outname2 = op.join(args.twi_df['Output'][ind], 
                                  'mastertrace_%s_%s.dist' 
                                  %(args.twi_df['Specid'][ind],
                                    config.Amp_dict[amp][1]))
                D.writeto(outname2)
                twi1.save_fibers()
                twi2.save_fibers()
                if args.debug:
                    print("Finished working on Cal for %s, %s" %(spec, amp))  
Example #20
0
sys.path.append('/Users/dmiller/aoc')
from amplifier import Amplifier
from itertools import permutations

file = open('input.txt')
initial_data = list(map(int, file.read().split(',')))

#initial_data = [3,15,3,16,1002,16,10,16,1,16,15,15,4,15,99,0,0]
#initial_data = [3,23,3,24,1002,24,10,24,1002,23,-1,23,101,5,23,23,1,24,23,23,4,23,99,0,0]

phase_permutations = permutations(range(5), 5)

print('Starting Part 1 diagnostics')
max_thrust = 0
for phases in phase_permutations:
    ampA = Amplifier(initial_data)
    ampA.set_phase(phases[0])
    ampA.set_input(0)
    ampA.run()
    ampB = Amplifier(initial_data)
    ampB.set_phase(phases[1])
    ampB.set_input(ampA.get_output())
    ampB.run()
    ampC = Amplifier(initial_data)
    ampC.set_phase(phases[2])
    ampC.set_input(ampB.get_output())
    ampC.run()
    ampD = Amplifier(initial_data)
    ampD.set_phase(phases[3])
    ampD.set_input(ampC.get_output())
    ampD.run()
Example #21
0
 def __init__(self, program, phase_settings, feedback_loop_mode=False):
     self.amplifiers = [
         Amplifier(program, setting) for setting in phase_settings
     ]
     self.feedback_loop_mode = feedback_loop_mode
    def __init__(self):

        # Create a Network object
        self.net = Network()

        nodes = []
        # Create the nodes of the network
        n1 = Node(1, amplifier=Amplifier(target_gain=9))
        nodes.append(n1)
        n2 = Node(2, amplifier=Amplifier(target_gain=9))
        nodes.append(n2)
        n3 = Node(3)
        nodes.append(n3)
        n4 = Node(4, amplifier=Amplifier(target_gain=18))
        nodes.append(n4)
        n5 = Node(5, amplifier=Amplifier(target_gain=18))
        nodes.append(n5)
        n6 = Node(6, amplifier=Amplifier(target_gain=9))
        nodes.append(n6)
        n7 = Node(7)
        nodes.append(n7)
        n8 = Node(8)
        nodes.append(n8)

        for node in nodes:
            self.net.add_node(node)

        links = []
        # Create links of the network
        l1 = Link(n1, n2)
        links.append(l1)
        l2 = Link(n2, n3)
        links.append(l2)
        l3 = Link(n3, n4)
        links.append(l3)
        l4 = Link(n3, n5)
        links.append(l4)
        l5 = Link(n5, n6)
        links.append(l5)
        l6 = Link(n6, n7)
        links.append(l6)
        l7 = Link(n4, n7)
        links.append(l7)
        l8 = Link(n7, n8)
        links.append(l8)

        for link in links:
            self.net.add_link(link)

        # Create spans of the links
        fibre_attenuation = 0.2
        span_link1 = Span(length=45, fibre_attenuation=fibre_attenuation)
        span_link2 = Span(length=70, fibre_attenuation=fibre_attenuation)
        span_link5 = Span(length=45, fibre_attenuation=fibre_attenuation)
        span_link6 = Span(length=20, fibre_attenuation=fibre_attenuation)
        span_link7 = Span(length=25, fibre_attenuation=fibre_attenuation)

        # Add spans to the links
        self.net.add_span_to_link(
            l1, span_link1,
            Amplifier(target_gain=9, wavelength_dependent_gain_id='wdg1'))
        self.net.add_span_to_link(
            l2, span_link2,
            Amplifier(target_gain=14, wavelength_dependent_gain_id='wdg1'))
        self.net.add_span_to_link(
            l5, span_link5,
            Amplifier(target_gain=9, wavelength_dependent_gain_id='wdg1'))
        self.net.add_span_to_link(
            l6, span_link6,
            Amplifier(target_gain=4, wavelength_dependent_gain_id='wdg1'))
        self.net.add_span_to_link(
            l7, span_link7,
            Amplifier(target_gain=5, wavelength_dependent_gain_id='wdg1'))

        self.net.build()

        route = [(n1, l1), (n2, l2), (n3, l4), (n5, l5), (n6, l6), (n7, l8),
                 (n8, None)]
        # OpticalSignal index starts from 1
        signals = [
            OpticalSignal(83),
            OpticalSignal(81),
            OpticalSignal(82),
            OpticalSignal(84),
            OpticalSignal(85)
        ]
        self.net.transmit(n1, n8, signals, route)

        channel = 1529.2 + 83 * 0.4
        osnr_values = []
        spans_length = []
        osnr_values.append(
            abs_to_db((10**(-2.0 / 10.0) * 0.8 - (10**(-39.0 / 10.0) * 4)) /
                      (10**(-39.0 / 10.0))))
        # print(abs_to_db((10**(-2.0/10.0)*0.8-(10**(-39.0/10.0)*4))/(10**(-39.0/10.0))))
        spans_length.append(0)
        osnr = self.net.monitor(l1, span_link1, 83, links)
        # print("OSNR of channel %s (nm) is %s dB at span %s." % (
        #     str(channel), str(osnr), span_link1.span_id))
        osnr_values.append(osnr)
        spans_length.append(span_link1.length)
        osnr = self.net.monitor(l2, span_link2, 83, links)
        # print("OSNR of channel %s (nm) is %s dB at span %s." % (
        #     str(channel), str(osnr), span_link2.span_id))
        osnr_values.append(osnr)
        spans_length.append(span_link2.length)
        osnr = self.net.monitor(l5, span_link5, 83, links)
        # print("OSNR of channel %s (nm) is %s dB at span %s." % (
        #     str(channel), str(osnr), span_link5.span_id))
        osnr_values.append(osnr)
        spans_length.append(span_link5.length)
        osnr = self.net.monitor(l6, span_link6, 83, links)
        # print("OSNR of channel %s (nm) is %s dB at span %s." % (
        #     str(channel), str(osnr), span_link6.span_id))
        osnr_values.append(osnr)
        spans_length.append(span_link6.length)

        graphics = Graphic()
        graphics.plot_osnr_increment(osnr_values, spans_length)
Example #23
0
def amp_wrapper(prog):

    highest = -np.inf
    best = None
    exited = [False] * 5

    amp_A = Amplifier("A", prog.copy(), [].copy())
    amp_B = Amplifier("B", prog.copy(), [].copy())
    amp_C = Amplifier("C", prog.copy(), [].copy())
    amp_D = Amplifier("D", prog.copy(), [].copy())
    amp_E = Amplifier("E", prog.copy(), [].copy())

    for phase in list(itertools.permutations(list(range(5, 10)))):

        [a, b, c, d, e] = phase

        amp_A.inputs.append(a)
        amp_B.inputs.append(b)
        amp_C.inputs.append(c)
        amp_D.inputs.append(d)
        amp_E.inputs.append(e)

        exited = [False] * 5
        e_out = 0  # initial input
        loopcount = 0

        # debug(f"\nPhase input: {phase}\n")

        while (True):

            amp_A.inputs.append(e_out)
            amp_A.run_prog_from_current_state()
            a_out = amp_A.outputs[-1]

            amp_B.inputs.append(a_out)
            amp_B.run_prog_from_current_state()
            b_out = amp_B.outputs[-1]

            amp_C.inputs.append(b_out)
            amp_C.run_prog_from_current_state()
            c_out = amp_C.outputs[-1]

            amp_D.inputs.append(c_out)
            amp_D.run_prog_from_current_state()
            d_out = amp_D.outputs[-1]

            amp_E.inputs.append(d_out)
            amp_E.run_prog_from_current_state()
            e_out = amp_E.outputs[-1]

            if amp_E.has_exited:
                break

        thruster_signal = e_out

        if highest < thruster_signal:

            highest = thruster_signal
            best_phases = [a, b, c, d, e].copy()

        amp_A.reset()
        amp_B.reset()
        amp_C.reset()
        amp_D.reset()
        amp_E.reset()

    print("BEST PHASES: " + str(best_phases))
    print("HIGHEST THRUSTER SIGNAL: " + str(highest))
Example #24
0
def reduce_science(args):
    for spec in args.specid:
        spec_ind_sci = np.where(args.sci_df['Specid'] == spec)[0]
        for amp in config.Amps:
            amp_ind_sci = np.where(args.sci_df['Amp'] == amp)[0]
            sci_sel = np.intersect1d(spec_ind_sci, amp_ind_sci) 
            for ind in sci_sel:
                if args.instr == "virus":
                    if not args.use_trace_ref:
                        ifucen = np.loadtxt(op.join(args.configdir, 
                                                    'IFUcen_files', 
                                                    args.ifucen_fn[amp][0]
                                                    + args.sci_df['Ifuid'][ind] 
                                                    + '.txt'), 
                                                    usecols=[0,1,2,4], 
                                               skiprows=args.ifucen_fn[amp][1])
                        
                    else:
                        if args.sci_df['Ifuid'][ind] == '004':
                            ifucen = np.loadtxt(op.join(args.configdir,
                                                    'IFUcen_files',
                                                    'IFUcen_HETDEX_reverse_R.txt'),
                                                    usecols=[0,1,2,4],
                                               skiprows=args.ifucen_fn[amp][1])
                            ifucen[224:,:] = ifucen[-1:223:-1,:]
                        else:
                            ifucen = np.loadtxt(op.join(args.configdir,
                                                    'IFUcen_files',
                                                    'IFUcen_HETDEX.txt'),
                                                    usecols=[0,1,2,4],
                                               skiprows=args.ifucen_fn[amp][1])
                else:
                    ifucen = np.loadtxt(op.join(args.configdir, 'IFUcen_files', 
                                        args.ifucen_fn[amp][0]), 
                              usecols=[0,1,2], skiprows=args.ifucen_fn[amp][1])
                if args.debug:
                    print("Working on Sci for %s, %s" %(spec, amp)) 
                if args.check_if_twi_exists:
                    fn = op.join(args.twi_dir,'fiber_*_%s_%s_%s_%s.pkl' %(spec, 
                                                   args.sci_df['Ifuslot'][ind],
                                                     args.sci_df['Ifuid'][ind],
                                                                          amp))
                    calfiles = glob.glob(fn)
                    if not calfiles:
                        print("No cals found for %s,%s: %s"
                              %(spec, amp, args.sci_df['Files'][ind]))
                        print("If you want to produce cals include "
                              "--reduce_twi")
                  
                sci1 = Amplifier(args.sci_df['Files'][ind],
                                 args.sci_df['Output'][ind],
                                 calpath=args.twi_dir, skypath=args.sky_dir,
                                 debug=False, refit=False, 
                                 dark_mult=args.dark_mult[amp],
                                 darkpath=args.darkdir, biaspath=args.biasdir,
                                 virusconfig=args.configdir, 
                                 specname=args.specname[amp],
                                 use_pixelflat=(args.pixelflats<1),
                                 use_trace_ref=args.use_trace_ref,
                                 calculate_shift=args.adjust_trace,
                                 fiber_date=args.fiber_date,
                                 cont_smooth=args.cont_smooth)
                #sci1.load_fibers()
                #if sci1.fibers and not args.start_from_scratch:
                #    if sci1.fibers[0].spectrum is not None:
                #        sci1.prepare_image()
                #        sci1.sky_subtraction()
                #        sci1.clean_cosmics()
                #else:
                sci1.load_all_cal()
                if args.adjust_trace:
                    sci1.refit=True
                    sci1.get_trace()
                    sci1.refit=False
                sci1.fiberextract()
                if args.refit_fiber_to_fiber:
                    sci1.refit=True
                    sci1.get_fiber_to_fiber()
                    sci1.refit=False
                sci1.sky_subtraction()
                sci1.clean_cosmics()
                sci1.fiberextract()
                sci1.sky_subtraction()
                sci2 = Amplifier(args.sci_df['Files'][ind].replace(amp, 
                                                      config.Amp_dict[amp][0]),
                                 args.sci_df['Output'][ind],
                                 calpath=args.twi_dir, skypath=args.sky_dir, 
                                 debug=False, refit=False, 
                             dark_mult=args.dark_mult[config.Amp_dict[amp][0]],
                                 darkpath=args.darkdir, biaspath=args.biasdir,
                                 virusconfig=args.configdir, 
                                 specname=args.specname[amp],
                                 use_pixelflat=(args.pixelflats<1),
                                 use_trace_ref=args.use_trace_ref,
                                 calculate_shift=args.adjust_trace,
                                 fiber_date=args.fiber_date,
                                 cont_smooth=args.cont_smooth)
                #sci2.load_fibers()
                #if sci2.fibers and not args.start_from_scratch:
                #    if sci2.fibers[0].spectrum is not None:
                #        sci2.prepare_image()
                #        sci2.sky_subtraction()
                #        sci2.clean_cosmics()
                #else:
                sci2.load_all_cal()
                if args.adjust_trace:
                    sci2.refit=True
                    sci2.get_trace()
                    sci2.refit=False
                sci2.fiberextract()
                if args.refit_fiber_to_fiber:
                    sci2.refit=True
                    sci2.get_fiber_to_fiber()
                    sci2.refit=False
                sci2.sky_subtraction()
                sci2.clean_cosmics()
                sci2.fiberextract()
                sci2.sky_subtraction()
                outname = op.join(args.sci_df['Output'][ind],
                                  'S%s_%s_sci_%s.fits' %(
                          op.basename(args.sci_df['Files'][ind]).split('_')[0],
                                                   args.sci_df['Ifuslot'][ind], 
                                                      config.Amp_dict[amp][1]))
                make_spectrograph_image(sci1.clean_image, sci2.clean_image, 
                                        sci1.header, outname)
                make_spectrograph_image(sci1.error, sci2.error, 
                                        sci1.header, op.join(op.dirname(outname), 'ee.'+op.basename(outname)))                   
                make_error_frame(sci1.clean_image, sci2.clean_image, sci1.mask,
                                 sci2.mask, sci1.header, outname)
                outname = op.join(args.sci_df['Output'][ind],
                                  'cS%s_%s_sci_%s.fits' %(
                          op.basename(args.sci_df['Files'][ind]).split('_')[0],
                                                   args.sci_df['Ifuslot'][ind], 
                                                      config.Amp_dict[amp][1]))
                make_spectrograph_image(np.where(sci1.mask==0, 
                                                 sci1.clean_image, 0.0),
                                        np.where(sci2.mask==0, 
                                                 sci2.clean_image, 0.0),
                                        sci1.header, outname)
                make_error_frame(sci1.clean_image, sci2.clean_image, sci1.mask,
                                 sci2.mask, sci1.header, outname)
                outname = op.join(args.sci_df['Output'][ind],
                                  'CsS%s_%s_sci_%s.fits' %(
                          op.basename(args.sci_df['Files'][ind]).split('_')[0],
                                                   args.sci_df['Ifuslot'][ind], 
                                                      config.Amp_dict[amp][1]))
                make_spectrograph_image(sci1.continuum_sub, sci2.continuum_sub, 
                                        sci1.header, outname)
                make_error_frame(sci1.continuum_sub, sci2.continuum_sub, 
                                 sci1.mask, sci2.mask, sci1.header, outname)
                outname = op.join(args.sci_df['Output'][ind],
                                  'cCsS%s_%s_sci_%s.fits' %(
                          op.basename(args.sci_df['Files'][ind]).split('_')[0],
                                                   args.sci_df['Ifuslot'][ind], 
                                                      config.Amp_dict[amp][1]))
                make_spectrograph_image(np.where(sci1.mask==0, 
                                                 sci1.continuum_sub, 0.0),
                                        np.where(sci2.mask==0, 
                                                 sci2.continuum_sub, 0.0),
                                        sci1.header, outname)
                make_error_frame(sci1.continuum_sub, sci2.continuum_sub,
                                 sci1.mask, sci2.mask, sci1.header, outname)
                outname = op.join(args.sci_df['Output'][ind],
                                  'cCsS%s_%s_sci_%s_imstat.png' %(
                          op.basename(args.sci_df['Files'][ind]).split('_')[0],
                                                   args.sci_df['Ifuslot'][ind], 
                                                      config.Amp_dict[amp][1]))
                imstat(sci1.residual, sci2.residual, sci1.fibers,
                       sci2.fibers, outname)
                Fe, FeS = recreate_fiberextract(sci1, sci2, 
                                                wavelim=args.wvl_dict[amp], 
                                                disp=args.disp[amp])
                outname = op.join(args.sci_df['Output'][ind],
                                  'Fe%s_%s_sci_%s.fits' %(
                          op.basename(args.sci_df['Files'][ind]).split('_')[0],
                                                   args.sci_df['Ifuslot'][ind], 
                                                      config.Amp_dict[amp][1]))
                make_fiber_image(Fe, sci1.header, outname, args, amp)
                make_fiber_error(Fe, sci1.header, outname, args, amp)
                make_cube_file(args, outname, ifucen, args.cube_scale, 
                               config.Amp_dict[amp][1])
                outname = op.join(args.sci_df['Output'][ind],
                                  'FeS%s_%s_sci_%s.fits' %(
                          op.basename(args.sci_df['Files'][ind]).split('_')[0],
                                                   args.sci_df['Ifuslot'][ind], 
                                                      config.Amp_dict[amp][1]))
                make_fiber_image(FeS, sci1.header, outname, args, amp)
                make_fiber_error(FeS, sci1.header, outname, args, amp)
                make_cube_file(args, outname, ifucen, args.cube_scale, 
                               config.Amp_dict[amp][1])
                if args.save_sci_fibers:
                    sci1.save_fibers()
                    sci2.save_fibers()
                if args.save_sci_amplifier:
                    sci1.save()
                    sci2.save()
                if args.debug:
                    print("Finished working on Sci for %s, %s" %(spec, amp))                    
Example #25
0
def reduce_science(args):
    for spec in args.specid:
        spec_ind_sci = np.where(args.sci_df['Specid'] == spec)[0]
        for amp in config.Amps:
            amp_ind_sci = np.where(args.sci_df['Amp'] == amp)[0]
            sci_sel = np.intersect1d(spec_ind_sci, amp_ind_sci) 
            for ind in sci_sel:
                if args.instr == "virus":
                    if not args.use_trace_ref:
                        ifucen = np.loadtxt(op.join(args.configdir, 
                                                    'IFUcen_files', 
                                                    args.ifucen_fn[amp][0]
                                                    + args.sci_df['Ifuid'][ind] 
                                                    + '.txt'), 
                                                    usecols=[0,1,2,4], 
                                               skiprows=args.ifucen_fn[amp][1])
                    else:
                        if args.sci_df['Ifuid'][ind] == '004':
                            ifucen = np.loadtxt(op.join(args.configdir,
                                                    'IFUcen_files',
                                                    'IFUcen_HETDEX_reverse_R.txt'),
                                                    usecols=[0,1,2,4],
                                               skiprows=args.ifucen_fn[amp][1])
                            ifucen[224:,:] = ifucen[-1:223:-1,:]

                        else:
                            ifucen = np.loadtxt(op.join(args.configdir,
                                                    'IFUcen_files',
                                                    'IFUcen_HETDEX.txt'),
                                                    usecols=[0,1,2,4],
                                               skiprows=args.ifucen_fn[amp][1])
                else:
                    ifucen = np.loadtxt(op.join(args.configdir, 'IFUcen_files', 
                                        args.ifucen_fn[amp][0]), 
                              usecols=[0,1,2,4], skiprows=args.ifucen_fn[amp][1])
                if args.debug:
                    print("Working on Sci/Twi for %s, %s" %(spec, amp)) 
                if args.check_if_twi_exists:
                    fn = op.join(args.twi_dir,'fiber_*_%s_%s_%s_%s.pkl' %(spec, 
                                                   args.sci_df['Ifuslot'][ind],
                                                     args.sci_df['Ifuid'][ind],
                                                                          amp))
                    calfiles = glob.glob(fn)
                    if not calfiles:
                        print("No cals found for %s,%s: %s"
                              %(spec, amp, args.sci_df['Files'][ind]))
                        print("If you want to produce cals include "
                              "--reduce_twi")
                              
                sci1 = Amplifier(args.sci_df['Files'][ind],
                                 args.sci_df['Output'][ind],
                                 calpath=args.twi_dir, skypath=args.sky_dir,
                                 debug=False, refit=False, 
                                 dark_mult=args.dark_mult[amp],
                                 darkpath=args.darkdir, biaspath=args.biasdir,
                                 virusconfig=args.configdir, 
                                 specname=args.specname[amp],
                                 use_pixelflat=(args.pixelflats<1),
                                 use_trace_ref=args.use_trace_ref,
                                 calculate_shift=args.adjust_trace,
                                 fiber_date=args.fiber_date,
                                 cont_smooth=args.cont_smooth,
                                 make_residual=False, do_cont_sub=False,
                                 make_skyframe=False)
                sci1.load_all_cal()
                wavelim=[4500,4600]
                xlim = np.interp([wavelim[0],wavelim[1]],
                                 np.linspace(args.wvl_dict[amp][0],
                                             args.wvl_dict[amp][1], sci1.D),
                                 np.arange(sci1.D))
                cols=np.arange(int(xlim[0])-10,int(xlim[1])+10)  
                sci1.fiberextract(cols=cols)
                sci1.sky_subtraction()
                sci2 = Amplifier(args.sci_df['Files'][ind].replace(amp, 
                                                      config.Amp_dict[amp][0]),
                                 args.sci_df['Output'][ind],
                                 calpath=args.twi_dir, skypath=args.sky_dir, 
                                 debug=False, refit=False, 
                             dark_mult=args.dark_mult[config.Amp_dict[amp][0]],
                                 darkpath=args.darkdir, biaspath=args.biasdir,
                                 virusconfig=args.configdir, 
                                 specname=args.specname[amp],
                                 use_pixelflat=(args.pixelflats<1),
                                 use_trace_ref=args.use_trace_ref,
                                 calculate_shift=args.adjust_trace,
                                 fiber_date=args.fiber_date,
                                 cont_smooth=args.cont_smooth,
                                 make_residual=False, do_cont_sub=False,
                                 make_skyframe=False)
                sci2.load_all_cal()
                sci2.fiberextract(cols=cols)                    
                sci2.sky_subtraction()
                Fe, FeS = recreate_fiberextract(sci1, sci2, 
                                                wavelim=wavelim, 
                                                disp=args.disp[amp])
                FE = [Fe, FeS]
                FEN = ['Fe', 'FeS']
                for f,n in zip(FE, FEN):
                    outname = op.join(args.sci_df['Output'][ind],
                                      '%s%s_%s_sci_%s.fits' %(n,
                              op.basename(args.sci_df['Files'][ind]).split('_')[0],
                                                       args.sci_df['Ifuslot'][ind], 
                                                          config.Amp_dict[amp][1]))
                    make_fiber_image(f, sci1.header, outname, args, amp)
                    
                    make_cube_file(args, outname, ifucen, args.cube_scale, 
                                   config.Amp_dict[amp][1])
                if args.save_sci_fibers:
                    sci1.save_fibers()
                    sci2.save_fibers()
                if args.save_sci_amplifier:
                    sci1.save()
                    sci2.save()
                if args.debug:
                    print("Finished working on Sci/Twi for %s, %s" %(spec, amp))        
Example #26
0
from amplifier import Amplifier

input = list(map(int, open("2019/9/input.txt", "r").read().split(",")))
# input = [104,1125899906842624,99]
amplifier = Amplifier(input)
amplifier.run_int_code([1])