Example #1
0
def main(argc, argv):
    ampl = AMPL(Environment(r'C:\Users\etjones\Desktop\AI OPS\AMPL\amplide.mswin64'))
    os.chdir(os.path.dirname(__file__) or os.curdir)
    try:
        if argc > 1:
            ampl.setOption('solver', argv[1])

        # Read the model and data files.
        #modelDirectory = argv[2] if argc == 3 else os.path.join('..', 'models')
        #ampl.read(os.path.join(modelDirectory, 'diet/diet.mod'))
        #ampl.readData(os.path.join(modelDirectory, 'diet/diet.dat'))
        ampl.read(r'C:\Users\etjones\Desktop\AI OPS\AMPL\custom_models\transp.mod')
        ampl.readData(r'C:\Users\etjones\Desktop\AI OPS\AMPL\custom_models\transp.dat')

        # Solve
        print('\n' + "AMPL MODEL:" + '\n')
        ampl.solve()
        totalcost = ampl.getObjective('Total_Cost')
        print("Minimum Cost:", totalcost.value())
        print('\n' + "Optimal Flow:")
        ampl.display('Trans')
        print('\n' + "Compare pdf flow to the above table to confirm optmial flows")
    except Exception as e:
        print(e)
        raise
Example #2
0
def main(argc, argv):
    from amplpy import AMPL
    os.chdir(os.path.dirname(__file__) or os.curdir)
    try:
        # Create an AMPL instance
        ampl = AMPL(Environment('C:/xampp/htdocs/python/ampl/ampl.mswin64'))
        """
        # If the AMPL installation directory is not in the system search path:
        from amplpy import Environment
        ampl = AMPL(
            Environment('C:/xampp/htdocs/python/ampl/ampl.mswin64'))
        """

        if argc > 1:
            ampl.setOption('solver', argv[1])

        # Read the model and data files.
        modelDirectory = argv[2] if argc == 3 else os.path.join('..', 'models')
        ampl.read(os.path.join(modelDirectory, 'diet/diet.mod'))
        ampl.readData(os.path.join(modelDirectory, 'diet/diet.dat'))

        # Solve
        ampl.solve()

        # Get objective entity by AMPL name
        totalcost = ampl.getObjective('Total_Cost')
        # Print it
        print("Objective is:", totalcost.value())

        # Reassign data - specific instances
        cost = ampl.getParameter('cost')
        cost.setValues({'BEEF': 5.01, 'HAM': 4.55})
        print("Increased costs of beef and ham.")

        # Resolve and display objective
        ampl.solve()
        print("New objective value:", totalcost.value())

        # Reassign data - all instances
        elements = [3, 5, 5, 6, 1, 2, 5.01, 4.55]
        cost.setValues(elements)
        print("Updated all costs.")

        # Resolve and display objective
        ampl.solve()
        print("New objective value:", totalcost.value())

        # Get the values of the variable Buy in a dataframe object
        buy = ampl.getVariable('Buy')
        df = buy.getValues()
        # Print them
        print(df)

        # Get the values of an expression into a DataFrame object
        df2 = ampl.getData('{j in FOOD} 100*Buy[j]/Buy[j].ub')
        # Print them
        print(df2)
    except Exception as e:
        print(e)
        raise
Example #3
0
def solver(alpha, n_intersections, C, g_i_inbound, g_i_outbound, delta, verbose=True):
    """
    Solves the linear problem for the given set of parameters
    :param alpha:
    :type alpha:
    :param n_intersections:
    :type n_intersections:
    :param C:
    :type C:
    :param g_i_inbound:
    :type g_i_inbound:
    :param g_i_outbound:
    :type g_i_outbound:
    :param delta:
    :type delta:
    :return:
    :rtype:
    """
    ampl = AMPL(Environment(path))

    # Set the solver
    ampl.setOption('solver', path + '/cplex')

    # Read the model file
    ampl.read('lp.mod')

    # Set parameters values
    ampl.param['alpha'] = alpha
    ampl.param['N'] = n_intersections
    ampl.param['C'] = C
    ampl.param['g_incoming'] = g_i_inbound
    ampl.param['g_outgoing'] = g_i_outbound
    ampl.param['delta'] = delta

    if verbose == True:
        print("alpha: {}".format(alpha))
        print("N: {}".format(n_intersections))
        print("C: {}".format(C))
        print("g_incoming: {}".format(g_i_inbound))
        print("g_outgoing: {}".format(g_i_outbound))
        print("delta: {}".format(delta))

    # Resolve and display objective
    ampl.solve()
    bandwidth = ampl.getObjective('bandwidth').value()

    # Display the variables
    b_incoming = ampl.getVariable('b_incoming').value()
    b_outgoing = ampl.getVariable('b_outgoing').value()
    wl = ampl.getVariable('w').getValues()

    if verbose == True:
        print("New objective value: {}".format(bandwidth))
        print("New offsets: {}".format(list(wl.toPandas()['w.val'])))
        print("Incoming bandwidth: {}".format(b_incoming))
        print("Outgoing bandwidth: {}".format(b_outgoing))

    # return bandwidths and offset values
    return b_incoming, b_outgoing, list(wl.toPandas()['w.val'])
Example #4
0
    def test_environment(self):
        from amplpy import Environment, AMPL

        env1 = Environment()
        env2 = Environment(os.curdir)
        self.assertEqual(env2.get_bin_dir(), os.curdir)
        env1.set_bin_dir(env2.get_bin_dir())
        self.assertEqual(env1.get_bin_dir(), env1.get_bin_dir())
        self.assertEqual(len(dict(env1)), len(list(env1)))
        self.assertEqual(list(sorted(dict(env1).items())), list(sorted(env1)))
        env1["MyEnvVar"] = "TEST"
        self.assertEqual(env1["MyEnvVar"], "TEST")
        self.assertEqual(env2["MyEnvVar"], None)
        d = dict(env1)
        self.assertEqual(d["MyEnvVar"], "TEST")
        ampl = AMPL(Environment())
        ampl.close()
def calculate(*args):
    try:
        ampl = AMPL(Environment('/Users/zintun/Downloads/amplide.macosx64')) ##path has to change accordingly
        ampl.setOption('solver', 'gurobi')

        ampl.read('Y3_Elementals.mod')
        ampl.readData('Y3_data.dat')

        day_val = int(day.get())
        print(day_val)

        T = ampl.getParameter('T')
        T.set(day_val)

        ampl.solve()

        v1 = ampl.getVariable('X').getValues()
            
        c = v1.toList()
        rows = [[int(column) for column in row] for row in c]

        org_mat = []
        dest_mat = []
        mod_mat = []
        value_mat = []
        for i in range(len(rows)):
            element = rows[i]
            origin = element[0]
            dest = element[1]
            mode = element[2]
            value = element[3]
            org_mat.append(origin)
            dest_mat.append(dest)
            mod_mat.append(mode)
            value_mat.append(value)

        N = ampl.getParameter('N').getValues()
        N1 = N.toList()
        N_rows = [[int(column) for column in row] for row in N1]
        count = 0
        exist = []
        while(count < len(N_rows)):
            if(N_rows[count][3] or N_rows[count+1][3] or N_rows[count+2][3] or N_rows[count+3][3]):
                exist.extend([1, 1, 1,1])
            else:
                exist.extend([0, 0, 0,0])
            count = count + 4

        
        cost = ampl.getObjective('Cost').value()

        drawGraph1(org_mat,dest_mat,mod_mat,value_mat,exist,cost)


    except ValueError:
        pass
Example #6
0
def solver(alpha, n_intersections, C, g_i_inbound, g_i_outbound, delta, print_=True):
    """
    Solves the linear problem for the given set of parameters
    :param alpha:
    :type alpha:
    :param n_intersections:
    :type n_intersections:
    :param C:
    :type C:
    :param g_i_inbound:
    :type g_i_inbound:
    :param g_i_outbound:
    :type g_i_outbound:
    :param delta:
    :type delta:
    :return:
    :rtype:
    """
    ampl = AMPL(Environment(path))

    # Set the solver
    ampl.setOption('solver', path + '/cplex')

    # Read the model file
    ampl.read('lp.mod')

    # Set parameters values
    ampl.param['alpha'] = alpha
    ampl.param['N'] = n_intersections
    ampl.param['C'] = C
    ampl.param['g_incoming'] = g_i_inbound
    ampl.param['g_outgoing'] = g_i_outbound
    ampl.param['delta'] = delta

    # Resolve and display objective
    ampl.solve()
    bandwidth = ampl.getObjective('bandwidth').value()

    # Display the variables
    b_incoming = ampl.getVariable('b_incoming').value()
    b_outgoing = ampl.getVariable('b_outgoing').value()
    w_relative = ampl.getVariable('w').getValues()
    w_relative = [w[1] for w in w_relative]

    if print_ == True:
        print("New objective value: {}".format(bandwidth))
        print("Incoming bandwidth: {}".format(b_incoming))
        print("Outgoing bandwidth: {}".format(b_outgoing))
        print("Incoming offsets: {}".format(w_relative))

    # return bandwidths and offset values
    return b_incoming, b_outgoing, w_relative
Example #7
0
def solve_sscfl_instance(mod_file, sscfl_instance, ampl_folder):
    print('### AMPL SOLUTION ###')
    if ampl_folder is None:
        primal_pl = AMPL()
    else:
        primal_pl = AMPL(Environment(ampl_folder))
    primal_pl.read('ampl_mod_files/' + mod_file)
    primal_pl.setOption('solver', 'cplex')
    primal_pl = write_ampl_sscfl_dat_file(primal_pl, sscfl_instance)
    primal_pl.solve()
    f = primal_pl.getObjective('f')
    print('\nZ = ', '%.5f' % (f.value()))
    return f.value()
def compute_defense(att_stg,
                    prod_dist,
                    num_of_hp=args.fix_honeypots,
                    rationality=args.fix_rationality):
    # production ports and attacker"s strategy
    df = DataFrame('P')
    ports = getRelPorts(att_stg, prod_dist, num=25)
    df.setColumn('P', list(ports))

    #ports = getAllPorts(att_stg, prod_dist)
    #print(('Considered ports are: ', ports))
    att = [att_stg.get(x, 0) for x in ports]
    prod = [prod_dist.get(x, 0) for x in ports]
    #print(('Attack ports: ', att, len(att)))
    #print(('Dist ports: ', prod, len(prod)))

    df.addColumn('s', prod)
    df.addColumn('p', att)

    ampl = AMPL(Environment(args.ampl))
    ampl.setOption('solver', args.solver)
    # ampl.setOption('verbosity', 'terse')
    # Read the model file
    ampl.read(args.model)

    # Assign data to s
    ampl.setData(df, 'P')
    ampl.eval('let L :=  {}; let rat := {};'.format(num_of_hp, rationality))

    #print(df)
    # Solve the model
    with suppress_stdout():
        ampl.solve()
    reward = ampl.getObjective("reward").value()

    hp_stg = ampl.getData("{j in P} h[j]")
    output = dict()
    stg_json = list()
    for k, v in hp_stg.toDict().items():
        stg_json.append({"port": int(k), "prob": v})

    output.update({"stg": stg_json})
    output.update({"reward": reward})
    output.update({"rationality": rationality})
    output.update({"num_of_hp": num_of_hp})
    output.update({"used_hps": ampl.getData("tot").toDict().popitem()[1]})

    ampl.close()
    return output
Example #9
0
def run_ampl_model(data, minW=0.01, maxW=0.6, ex=0, K=3):
    dir = os.path.dirname(__file__)
    dir = 'C:\\Biblioteki\\AMPL\\ampl.mswin64'
    # dir=dir.replace('/','\\')

    # ampl = AMPL()
    ampl = AMPL(Environment(dir))

    if ex < 1:
        ampl.read('omg3.txt')
        data_file = generate_temp_data_file(data, minW=minW, maxW=maxW)
        ampl.setOption('solver', dir + '\minos.exe')
    elif ex == 2:

        ampl.read('omg_lmt.txt')

        data_file = generate_temp_data_file_lmt(data, minW=minW, maxW=maxW, K=K)
        ampl.setOption('solver', dir + '\cplex.exe')

    elif ex == 3:
        # ampl.read('omg_lmt.txt')
        ampl.read('omg4.txt')

        data_file = generate_temp_data_file_lmt(data, minW=minW, maxW=maxW, K=K)
        ampl.setOption('solver', dir + '\cplex.exe')

    else:
        ampl.read('eomg.txt')
        data_file = generate_temp_data_file_ex(data, minW=minW, maxW=maxW)
        ampl.setOption('solver', dir + '\minos.exe')

    # data_file=open('data_pattern.txt')
    ampl.readData(data_file.name)
    # ampl.readData('data_test.dat')
    data_file.close()
    ampl.solve()
    x = get_np_array_from_variable(ampl, 'x')
    # x=ampl.getVariable('x').getValues().toPandas()

    v0 = ampl.getVariable('v0').getValues().toPandas()

    sol = []

    for i in range(x.shape[1]):
        sol.append(x.iloc[0, i] / v0.iloc[0, 0])

    return sol
Example #10
0
import random
from functools import reduce
import matplotlib.pyplot as plt
import subprocess
import time
from amplpy import AMPL, Environment
import numpy as np

#start 10:10 end 10:18

ampl = AMPL(Environment('/home/asino/Downloads/ampl_linux-intel64/'))
ampl.setOption("solver", "/home/asino/Downloads/ampl_linux-intel64/cplex")
random.seed(7)
np.random.seed(7)
players = {}
playersList = []
bidders = {}
biddersList = []
NBIDDERS = 8
BUDGET = 500
INCREMENT = 1

PLAYERS_PER_ROLE = {"A": 30, "C": 50, "D": 50, "P": 20}
VAR_PER_ROLE = {"A": 5, "C": 3, "D": 2, "P": 1}

for role, number in PLAYERS_PER_ROLE.items():
    for i in range(number):
        player = {}
        player["name"] = role + str(i)
        player["perf"] = np.random.normal(
            scale=VAR_PER_ROLE[role])  #random.random()
Example #11
0

import amplpy
import pandas as pd
from string import ascii_lowercase
from amplpy import AMPL, Environment


# In[2]:


print("Enter the kind of puzzle you want to solve : \n")

puzzle = int(input("Enter 1 for 3-In-A-Row, or 2 for ABC-Path: "))

ampl = AMPL(Environment("C:/Users/mayan/OneDrive/Documents/AMPL/ampl_mswin64"))

ampl.setOption("solver", "cplex")

if puzzle == 1:
    
    ampl.reset()
    ampl.read('p2t05mod3.mod')
    ampl.readData('p2t05dat3.dat')
    
    #ask for user input for 3 in a row
    size = int(input("Enter the size of the grid (that is number of rows or columns in the grid) : \n"))
    
    invalid = int(input("Enter the number of minimum invalid consecutive cells : \n"))
    
    lst = []
Example #12
0
from amplpy import AMPL, Environment
import sys
import os
ampl = AMPL(
    Environment(
        'C:/Users/Meyerhofer/Desktop/UNI/OTDM/SVM-project/ampl_mswin64'))

size = range(-5, 9)


#for each nu:
def main():
    for i in range(-5, 9):
        f = open("data/nu.txt", "w")
        nu = 2**i
        print("----------------------------------------")
        print("nu= " + str(nu))
        f.write(str(nu))
        f.close()
        os.system("ampl_mswin64\\ampl primal.run")

        f = open("output/primal/acc_train.txt", "r")
        acc_train = f.read()
        acc_trainValue = acc_train.split(" = ")[1].split("\n")[0]
        print("Train accuracy= " + str(acc_trainValue))
        f.close()

        f = open("output/primal/acc_test.txt", "r")
        acc_test = f.read()
        acc_testValue = acc_test.split(" = ")[1].split("\n")[0]
        print("Test accuracy= " + str(acc_testValue))
Example #13
0
from amplpy import AMPL, Environment
import os
import sys
sys.path.append(os.getcwd())
from env_path import ENV_PATH

experiment_name = "zero_sum"

ampl = AMPL(Environment(ENV_PATH))
ampl.read(os.path.join(os.getcwd(), experiment_name, experiment_name + '.mod'))
ampl.readData(
    os.path.join(os.getcwd(), experiment_name, experiment_name + '.dat'))
ampl.solve()

totalcost = ampl.getObjective('Max_cost')
print("Difference in objectives is:", totalcost.value())
u = ampl.getVariable('u')
u = u.getValues()
t = ampl.getVariable('t')
t = t.getValues()
print("Objectives are {}, {}".format(u, t))
x = ampl.getVariable('p')
x = x.getValues()
y = ampl.getVariable('q')
y = y.getValues()
print(x, y)
Example #14
0
        distance_matrix[(d, r)] = abs(r - base)

if weeks == 1 and 0.5 in course_frequency.values():
    raise ValueError(
        "Creating a one-week schedule with courses with frequency of 0.5 is not possible. Please review the data")

# sys.exit()
print("Optimized Room Assignment Tool")

print("Setup")
print("Expected Number of Courses: ", sum(list(course_frequency.values())))


environment = os.environ.get("AMPL_PATH", "ampl")

ampl = AMPL(Environment(environment))
ampl.setOption('solver', 'cplex')

amplcode = AmplCode.from_file('room_assignment.txt')

# print("Parameters from AMPL Code:")
# print(amplcode.get_params())

amplcode.set_param("DpW", data=DpW)
amplcode.set_param("TpD", data=TpD)
amplcode.set_param("weeks", data=weeks)

# amplcode.set_set('rooms', '{' + ','.join(map(str, rooms)) + '}')
amplcode.set_set('rooms', '{' + ','.join(map(str, rooms)) + '}')
amplcode.set_set('courses', '{1..%i}' % course_count)
amplcode.set_set('departments', list(departmentHQ.keys()))
Example #15
0
 def testEnvironment(self):
     from amplpy import Environment, AMPL
     env1 = Environment()
     env2 = Environment(os.curdir)
     self.assertEqual(env2.getBinDir(), os.curdir)
     env1.setBinDir(env2.getBinDir())
     self.assertEqual(env1.getBinDir(), env1.getBinDir())
     self.assertEqual(len(dict(env1)), len(list(env1)))
     self.assertEqual(list(sorted(dict(env1).items())), list(sorted(env1)))
     env1['MyEnvVar'] = 'TEST'
     self.assertEqual(env1['MyEnvVar'], 'TEST')
     self.assertEqual(env2['MyEnvVar'], None)
     d = dict(env1)
     self.assertEqual(d['MyEnvVar'], 'TEST')
     ampl = AMPL(Environment())
     ampl.close()
Example #16
0
training_dat = "phase2_training.dat"#input("What's the directory of your training .dat file?")
validating_dir = "Validation_Dataset.csv" #input("What's the directory of your validating set?")
model_dir = "phase2_lasso.mod" #input("What's the directory of your model?")
ampl_dir =  "/home/nub3ar/AMPL" #input("Where is ampl installed on your computer?") #"E:\ampl_mswin64"
validating_data = pd.read_csv(open(validating_dir))
#dimensions of the data
dv1,dv2 = validating_data.shape
print(dv1, dv2)
#column names
col_names_va = validating_data.columns.values
#x/y variable separation
y_va = validating_data.loc[0::,'Label'].values.tolist()
x_va = validating_data.loc[0::,'Item'::]

############AMPL#################
ampl = AMPL(Environment(ampl_dir))

index_list = []
Accuracy_list = []
for index in (range 1:1000)
    ampl.reset()
    tuning = ampl.getParameter("tuning")
    tuning.SetValues(0.00001*index)
    ampl.read(model_dir)
    ampl.readData(training_dat)
    ampl.solve()
    a = ampl.getVariable('a').getValues().toList()
    b = ampl.getVariable('b').value()

    #parsing the coefficients
    a_list = []
from amplpy import AMPL, Environment
from tree import *

amplPATH = 'C:\\Users\\jose_\\Documents\\USM\\USM\\2020-2\\GIO\\tareas\\Tarea1\\ampl_mswin64'
ampl = AMPL(Environment(amplPATH))


def feasible(restrictions):
    # restrictions = []
    valids = 0
    for r in restrictions:
        if r:
            valids += 1
    return valids == len(restrictions)


def simplex():
    print("-------------------------------")
    print("Comenzando algoritmo simplex")
    print("-------------------------------")

    # Interpret the two files
    print("leyendo mod.mod...")
    ampl.read('ampl/mod.mod')

    print("leyendo dat.dat...")
    ampl.readData('dat.dat')

    print("resolviendo el problema...")
    ampl.solve()
Example #18
0
#Global variables (The paths must be changed by the user).
#---------------------------------------------------------
#Folder where AMPL is located on the computer.
ampl_path = '/home/victor/ampl_linux-intel64'

#If the .py is saved in the same folder of gensvmdat, change path to "".
#Otherwise put the correct folder path and the new files will be stored there.
path = '/home/victor/Escritorio/Matlab/OM/ProjecteSVM'

#Epsilon used to avoid problems of precision with floating points.
#It is recommended to not change this value.
epsilon = 1e-05
#---------------------------------------------------------
#Functions that allow the set-up the connection between python and AMPL.
ampl = AMPL(Environment('/home/victor/ampl_linux-intel64'))
#If another solver than cplex wants to be used, modify that parameter with
#the name of the desired solver.
ampl.setOption('solver', 'cplex')
#---------------------------------------------------------
#Auxiliar function to generate data with the swiss function.
def swiss_generation(num_points,seed,test):
    A,y = ds.make_swiss_roll(num_points,2,seed)
    #aux = statistics.median(y)
    aux = np.mean(y)
    for i in range(num_points):
        if(y[i] < aux): y[i] = -1
        else: y[i] = 1

    wr = np.matrix(A); ite = np.matrix(y); ite = ite.reshape(ite.size,1); write = np.c_[wr,ite];
Example #19
0
def main(argc, argv):
    from amplpy import AMPL, Environment
    ampl = AMPL(
        Environment(r'C:\Users\etjones\Desktop\AI OPS\AMPL\amplide.mswin64'))
    os.chdir(os.path.dirname(__file__) or os.curdir)
    try:
        if argc > 1:
            ampl.setOption('solver', argv[1])

        # Read the model and data files.
        #modelDirectory = argv[2] if argc == 3 else os.path.join('..', 'models')
        #ampl.read(os.path.join(modelDirectory, 'diet/diet.mod'))
        #ampl.readData(os.path.join(modelDirectory, 'diet/diet.dat'))
        ampl.read(
            r'C:\Users\etjones\Desktop\AI OPS\AMPL\custom_models\transp.mod')
        ampl.readData(
            r'C:\Users\etjones\Desktop\AI OPS\AMPL\custom_models\transp.dat')

        # Solve
        ampl.solve()
        totalcost = ampl.getObjective('Total_Cost')
        print("Minimum Cost:", totalcost.value())

        #a = ampl.getVariable('Trans')
        #print("Objective is:", a.value())

        # Get objective entity by AMPL name
        #totalcost = ampl.getObjective('total_cost')
        # Print it
        #print("Objective is:", totalcost.value())

        # Reassign data - specific instances
        # cost = ampl.getParameter('cost')
        # cost.setValues({'BEEF': 5.01, 'HAM': 4.55})
        # print("Increased costs of beef and ham.")

        # Resolve and display objective
        # ampl.solve()
        # print("New objective value:", totalcost.value())

        # Reassign data - all instances
        # elements = [3, 5, 5, 6, 1, 2, 5.01, 4.55]
        # cost.setValues(elements)
        # print("Updated all costs.")

        # Resolve and display objective
        # ampl.solve()
        # print("New objective value:", totalcost.value())

        # Get the values of the variable Buy in a dataframe object
        # buy = ampl.getVariable('Buy')
        # df = buy.getValues()
        # Print them
        # print(df)

        # Get the values of an expression into a DataFrame object
        # df2 = ampl.getData('{j in FOOD} 100*Buy[j]/Buy[j].ub')
        # # Print them
        # print(df2)
    except Exception as e:
        print(e)
        raise
Example #20
0
# 2nd paper 2. Monte Carlo simulation 
# forecasted solar data : real data
# real data to simulate : sampling from real data


# Call the AMPL-Phthon API to Python    
from amplpy import AMPL, DataFrame, Environment

# Call some packages  
import numpy as np
import pandas as pd


# Determine the path of the directory where AMPL is installed.
ampl = AMPL(Environment('path of AMPL'))


# Call energy scheduling model file and data file from the path of the directory where AMPL files are located
ampl.read('Energy_Scheduling.mod')
ampl.readData('Energy_Scheduling.dat')
   

# Determine the solver from AMPL
ampl.setOption('solver','C:/Users/David_Cho/Desktop/ampl_mswin64/cplex')   
 
  
# Define variables to calculate yearly data results
global d_loss_sim 
d_loss_sim = 0

decide_running = 0    
Example #21
0
import sys
import os
import pandas as pd
from amplpy import AMPL, Environment


# Holds dataframe of output.
output = None

try:
    # Binary path to AMPL install location.
    ampl = AMPL(environment=Environment(binaryDirectory=r'C:\Program Files\AMPL'))

    # Integer programming solver.
    ampl.setOption('solver', 'gurobi')

    # Read in AMPL files.
    ampl.read('wings.mod')
    ampl.readData('wings.dat')

    # Insert cost as column.
    output = ampl.param['cost'].getValues().toPandas()
    output.index = pd.to_numeric(output.index, downcast='integer')
    output.index.name = 'wings'

    # Solve for multiple target values. Can't solve for less than 4 wings.
    MAX_TARGET_TO_SOLVE = 400
    for target in range(4, MAX_TARGET_TO_SOLVE + 1):
        # Show progress.
        print('Processing target of {}...'.format(target))
Example #22
0
    def test_environment_initialization(self):
        from amplpy import Environment

        env = Environment("binary_directory")
        self.assertEqual("binary_directory", env.get_bin_dir())
        env = Environment("binary_directory", "binary_name")
        self.assertEqual("binary_directory", env.get_bin_dir())
        self.assertEqual("binary_name", env.get_bin_name())
        env.set_bin_dir("binary_directory_2")
        self.assertEqual("binary_directory_2", env.get_bin_dir())
        env.set_bin_name("binary_name_2")
        self.assertEqual("binary_name_2", env.get_bin_name())
Example #23
0
from amplpy import AMPL, Environment

ampl = AMPL(Environment(r'C:\Users\diego\Documents\Diego_Aldunate\iPre\AMPL'))
ampl.read(r'C:\Users\diego\Documents\Diego_Aldunate\iPre\AMPL/models/diet.mod')
ampl.readData(
    r'C:\Users\diego\Documents\Diego_Aldunate\iPre\AMPL/models/diet.dat')

ampl.solve()

# Get objective entity by AMPL name
totalcost = ampl.getObjective('total_cost')
# Print it
print("Objective is:", totalcost.value())

# Reassign data - specific instances
cost = ampl.getParameter('cost')
cost.setValues({'BEEF': 5.01, 'HAM': 4.55})
print("Increased costs of beef and ham.")
print(cost.getValues())

# Resolve and display objective
ampl.solve()
print("New objective value:", totalcost.value())

# Reassign data - all instances
cost.setValues([3, 5, 5, 6, 1, 2, 5.01,
                4.55])  #se actualizan valores de los parametros
print("Updated all costs.")
print(cost.getValues())

# Resolve and display objective
Example #24
0
# -*- coding: utf-8 -*-
"""
Created on Sat Aug 11 17:20:23 2018

@author: donja
"""

from amplpy import AMPL, Environment

ampl = AMPL(Environment('D:\\amplide.mswin64\\amplide.mswin64'))
ampl.option['solver'] = 'cplexamp'
ampl.read('example.mod')  #read the model
ampl.eval('objective z; solve;')
ampl.display('z', 'roth', 'traditional', 'surplus')

pstring = """
objective function = {z}
bi-weekly roth contribution = ${roth}
bi-weekly traditional contribution = ${traditional}
surplus (amount left after optimal allocation) = ${surplus}
total (without surplus)  = ${total}
total (with surplus)  = ${totalS}
"""
z = ampl.getValue('z')
roth = ampl.getValue('roth')
traditional = ampl.getValue('traditional')
surplus = ampl.getValue('surplus')

annual_roth_amt = roth * 12 * 2
annual_traditional_amt = traditional * 12 * 2
Example #25
0

def run_one_experiment(ampl, obj = 5, ppl = 5):
	generate(obj = obj, ppl = ppl)
	ampl.reset()
	ampl.read('/home/jon/Berkeley/ieor169/project/169projectPEnvy.mod')
	ampl.readData("/home/jon/Berkeley/ieor169/project/random_data/{}ppl{}obj.dat".format(ppl, obj))
	ampl.setOption('solver', 'cplex')
	start_time = time.time()
	ampl.solve()
	finish_time = time.time()
	p_envy = ampl.getObjective('p_envy').value()
		
	return p_envy, finish_time-start_time

ampl = AMPL(Environment("/home/jon/Berkeley/amplide.linux64"))

count = 0
with open('penvy.csv', 'a', newline='') as csvfile:
	fieldnames = ['Number of People', 'Number of Items', 'Optimal P-Envy', 'Wall Clock Time']
	writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
	writer.writeheader()
	for i in range(1,10):
		for j in range(1,10):
			for _ in range(30):
				p_envy, run_time = run_one_experiment(ampl, i, j)
				out = {'Number of People': j, 
						'Number of Items': i, 
						'Optimal P-Envy': p_envy, 
						'Wall Clock Time': run_time}
				print(out)
    ampl.reset()
    ampl.read('/Users/jonathan/Desktop/169projectPEnvy.mod')
    ampl.readData(
        "/Users/jonathan/Desktop/random_data/{}ppl{}obj_heuristic.dat".format(
            ppl, obj))
    ampl.setOption('solver', 'cplex')
    start_time = time.time()
    ampl.solve()
    finish_time = time.time()
    p_envy = ampl.getObjective('p_envy').value()

    return p_envy, finish_time - start_time


ampl = AMPL(
    Environment(
        "/Users/jonathan/Documents/files/amplide.macosx64/amplide.macosx64"))

with open('part4.csv', 'a', newline='') as csvfile:
    fieldnames = [
        'Number of People', 'Number of Items', 'Optimal P-Envy',
        'Wall Clock Time'
    ]
    writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
    writer.writeheader()
    for i in range(1, 11):
        for j in range(1, 11):
            for _ in range(30):
                p_envy, run_time = run_one_experiment(ampl, i, j)
                out = {
                    'Number of People': j,
                    'Number of Items': i,
from amplpy import AMPL, Environment
import functions as fun
import numpy as np
import random
import time
import sys
import os

# Path donde está AMPL en nuestro ordenador
ampl = AMPL(Environment('/home/alex/AMPL/ampl_linux-intel64'))
#ampl = AMPL(Environment('/home/elias/Escritorio/uni/2º/OM/ampl_linux-intel64'))
# Escogemos el solver cplex
ampl.setOption('solver', 'cplex')
'''
PARÁMETROS:
- option: nos indica que tipo de problema vamos a resolver
    1: primal
    2: dual con kernel lineal
    3: dual con kernel gaussiano
- num_points: número de puntos
- seed: semilla para la generación aleatoria del dataset
- nu: parámetro de la formulación del problema SVM
- data_type: indica si generamos los puntos con el algoritmo proporcionado
    por el profesor (gensvmdat), con el algoritmo del swiss roll
    (brazo de gitano) de sklearn o usamos la base de datos "skin"
    1: Para generarlos con gensvmdat (datos linealmente separables)
    2: Para generarlos con sklearn swiss_roll (datos no separables linealmente)
    3: Para usar la base de datos "skin"
'''
#try:
option = int(sys.argv[1])