Example #1
0
def hydro_grid_in_potential_well(mass=1 | units.MSun, length=100 | units.AU):
    converter = nbody_system.nbody_to_si(mass, length)

    # calculate density in field based on solar wind
    # gives a very low number
    molar_mass_hydrogen_proton = 1 | units.g / units.mol
    density_hydrogen_in_stellar_wind = 10 | 1 / units.cm**3
    particles_per_mol = 6.022e23 | 1 / units.mol
    density_hydrogen_in_stellar_wind_in_moles = (
            density_hydrogen_in_stellar_wind
            / particles_per_mol
            )
    density_gas = 100 * (
            density_hydrogen_in_stellar_wind_in_moles
            * molar_mass_hydrogen_proton
            ).as_quantity_in(units.MSun / units.AU**3)

    # override with higher number for plotting
    density_gas = 1e-3 | units.MSun / units.AU**3

    instance = Athena(converter)
    instance.initialize_code()
    instance.parameters.nx = 50
    instance.parameters.ny = 50
    instance.parameters.nz = 1
    instance.parameters.length_x = length
    instance.parameters.length_y = length
    instance.parameters.length_z = length
    instance.parameters.x_boundary_conditions = ("periodic", "periodic")
    instance.parameters.y_boundary_conditions = ("periodic", "periodic")
    instance.parameters.z_boundary_conditions = ("outflow", "outflow")

    # instance.stopping_conditions.number_of_steps_detection.enable()

    instance.set_has_external_gravitational_potential(1)

    instance.commit_parameters()

    grid_in_memory = instance.grid.copy()
    grid_in_memory.rho = density_gas
    pressure = 1 | units.Pa

    grid_in_memory.energy = pressure / (instance.parameters.gamma - 1)
    channel = grid_in_memory.new_channel_to(instance.grid)
    channel.copy()

    instance.initialize_grid()
    particle = Particle(
        mass=mass,
        position=length * [0.5, 0.5, 0.5],
        velocity=[0.0, 0.0, 0.0] | units.kms
    )

    gravity = Hermite(converter)
    dx = (grid_in_memory.x[1][0][0] - grid_in_memory.x[0]
          [0][0]).as_quantity_in(units.AU)
    gravity.parameters.epsilon_squared = dx**2
    gravity.particles.add_particle(particle)

    potential = gravity.get_potential_at_point(
        0 * instance.potential_grid.x.flatten(),
        instance.potential_grid.x.flatten(),
        instance.potential_grid.y.flatten(),
        instance.potential_grid.z.flatten()
    )

    potential = potential.reshape(instance.potential_grid.x.shape)
    instance.potential_grid.potential = potential

    instance.evolve_model(100 | units.yr)
    print(instance.get_timestep().value_in(units.yr))
    value_to_plot = instance.grid.rho[:, :, 0].value_in(
        units.MSun / units.AU**3)
    # value_to_plot = potential[...,...,0].value_in(potential.unit)
    plot_grid(value_to_plot)
Example #2
0
def hydro_grid_in_potential_well(mass=1 | units.MSun, length=100 | units.AU):
    converter = nbody_system.nbody_to_si(mass, length)

    # calculate density in field based on solar wind
    # gives a very low number
    molar_mass_hydrogen_proton = 1 | units.g / units.mol
    density_hydrogen_in_stellar_wind = 10 | 1 / units.cm**3
    particles_per_mol = 6.022e23 | 1 / units.mol
    density_hydrogen_in_stellar_wind_in_moles = (
        density_hydrogen_in_stellar_wind
        / particles_per_mol
    )
    density_gas = 100 * (
        density_hydrogen_in_stellar_wind_in_moles
        * molar_mass_hydrogen_proton
    ).as_quantity_in(units.MSun / units.AU**3)

    # override with higher number for plotting
    density_gas = 1e-3 | units.MSun / units.AU**3

    instance = Athena(converter)
    instance.initialize_code()
    instance.parameters.nx = 50
    instance.parameters.ny = 50
    instance.parameters.nz = 1
    instance.parameters.length_x = length
    instance.parameters.length_y = length
    instance.parameters.length_z = length
    instance.parameters.x_boundary_conditions = ("periodic", "periodic")
    instance.parameters.y_boundary_conditions = ("periodic", "periodic")
    instance.parameters.z_boundary_conditions = ("outflow", "outflow")

    # instance.stopping_conditions.number_of_steps_detection.enable()

    instance.set_has_external_gravitational_potential(1)

    instance.commit_parameters()

    grid_in_memory = instance.grid.copy()
    grid_in_memory.rho = density_gas
    pressure = 1 | units.Pa

    grid_in_memory.energy = pressure / (instance.parameters.gamma - 1)
    channel = grid_in_memory.new_channel_to(instance.grid)
    channel.copy()

    instance.initialize_grid()
    particle = Particle(
        mass=mass,
        position=length * [0.5, 0.5, 0.5],
        velocity=[0.0, 0.0, 0.0] | units.kms
    )

    gravity = Hermite(converter)
    dx = (grid_in_memory.x[1][0][0] - grid_in_memory.x[0]
          [0][0]).as_quantity_in(units.AU)
    gravity.parameters.epsilon_squared = dx**2
    gravity.particles.add_particle(particle)

    potential = gravity.get_potential_at_point(
        0 * instance.potential_grid.x.flatten(),
        instance.potential_grid.x.flatten(),
        instance.potential_grid.y.flatten(),
        instance.potential_grid.z.flatten()
    )

    potential = potential.reshape(instance.potential_grid.x.shape)
    instance.potential_grid.potential = potential

    instance.evolve_model(100 | units.yr)
    print(instance.get_timestep().value_in(units.yr))
    value_to_plot = instance.grid.rho[:, :, 0].value_in(
        units.MSun / units.AU**3)
    # value_to_plot = potential[...,...,0].value_in(potential.unit)
    plot_grid(value_to_plot)
Example #3
0
    hydro_code = Athena(unit_converter=converter,
                        number_of_workers=2)  #,redirection='none')
    hydro_code.initialize_code()

    hydro_code.parameters.gamma = 1.001
    hydro_code.parameters.courant_number = 0.3
    hydro_code.parameters.mesh_size = (number_of_grid_points,
                                       number_of_grid_points,
                                       number_of_grid_points)
    hydro_code.parameters.length_x = 1 | length
    hydro_code.parameters.length_y = 1 | length
    hydro_code.parameters.length_z = 1 | length
    hydro_code.parameters.x_boundary_conditions = ("periodic", "periodic")
    hydro_code.parameters.y_boundary_conditions = ("periodic", "periodic")
    hydro_code.parameters.z_boundary_conditions = ("periodic", "periodic")
    hydro_code.commit_parameters()

    set_initial_conditions(hydro_code, converter)

    times = t_end * range(n_steps) / n_steps
    for i, t in enumerate(t_end * range(n_steps) / float(n_steps)):
        print t.in_(units.Myr), hydro_code.model_time.in_(units.Myr)
        print "Hydro evolve 1"
        hydro_code.evolve_model(t + dt / 2.0)
        print "Cooling"
        hydro_code.grid.energy = evolve_internal_energy(
            hydro_code.grid.energy / hydro_code.grid.rho, dt,
            hydro_code.grid.rho / global_mu) * hydro_code.grid.rho
        print(global_mu / constants.kB *
              (hydro_code.grid.energy / hydro_code.grid.rho).amin()).in_(
                  units.K),