def setup_stellar_evolution_model(): out_pickle_file = os.path.join(get_path_to_results(), "super_giant_stellar_structure.pkl") if os.path.exists(out_pickle_file): return out_pickle_file stellar_evolution = MESA(redirection="none") stars = Particles(1) stars.mass = 10.0 | units.MSun stellar_evolution.initialize_module_with_default_parameters() stellar_evolution.particles.add_particles(stars) stellar_evolution.commit_particles() print("Evolving a MESA star with mass:", stellar_evolution.particles[0].mass) try: while True: stellar_evolution.evolve_model() except AmuseException as ex: print "Evolved star to", stellar_evolution.particles[0].age print "Radius:", stellar_evolution.particles[0].radius pickle_stellar_model(stellar_evolution.particles[0], out_pickle_file) stellar_evolution.stop() return out_pickle_file
def setup_stellar_evolution_model(): out_pickle_file = os.path.join( get_path_to_results(), "super_giant_stellar_structure.pkl") if os.path.exists(out_pickle_file): return out_pickle_file stellar_evolution = MESA(redirection="none") stars = Particles(1) stars.mass = 10.0 | units.MSun stellar_evolution.initialize_module_with_default_parameters() stellar_evolution.particles.add_particles(stars) stellar_evolution.commit_particles() print( "Evolving a MESA star with mass:", stellar_evolution.particles[0].mass ) try: while True: stellar_evolution.evolve_model() except AmuseException as ex: print "Evolved star to", stellar_evolution.particles[0].age print "Radius:", stellar_evolution.particles[0].radius pickle_stellar_model(stellar_evolution.particles[0], out_pickle_file) stellar_evolution.stop() return out_pickle_file
def evolve_giant(giant, start_radius, stop_radius): stellar_evolution = stellar_evolution_code( redirection="file", redirect_file=stellar_evolution_code.__name__ + ".log") giant_in_code = stellar_evolution.particles.add_particle(giant) print "\nEvolving with", stellar_evolution_code.__name__ while (giant_in_code.radius < start_radius): giant_in_code.evolve_one_step() print giant_in_code.radius, giant_in_code.age print "Stellar radius exceeds {0}, now saving model every step...".format( start_radius) print giant_in_code.as_set() i = 0 while (giant_in_code.radius < stop_radius): giant_in_code.evolve_one_step() print giant_in_code.radius, giant_in_code.age pickle_file_name = "model_{0:=04}_{1:.1f}.pkl".format( i, giant_in_code.radius.value_in(units.RSun)) pickle_stellar_model(giant_in_code, pickle_file_name) i += 1 print "Finished: stellar radius {0} exceeds {1}, ".format( giant_in_code.radius, stop_radius) stellar_evolution.stop()
def evolve_giant(giant, stop_radius): stellar_evolution = stellar_evolution_code() giant_in_code = stellar_evolution.particles.add_particle(giant) while (giant_in_code.radius < 10 | units.RSun): giant_in_code.evolve_one_step() print "Giant starts to ascend the giant branch, now saving model every step..." print giant_in_code.as_set() i = 0 while (giant_in_code.radius < stop_radius): giant_in_code.evolve_one_step() print giant_in_code.radius, giant_in_code.age pickle_file_name = "./model_{0:=04}_".format( i) + "%0.1f" % (giant_in_code.radius.value_in(units.RSun)) pickle_stellar_model(giant_in_code, pickle_file_name) i += 1
def head_on_stellar_merger( masses = [0.3, 3.0] | units.MSun, star_age = 310.0 | units.Myr, maximally_evolved_stars = False, initial_separation = 4.0 | units.RSun, angle = numpy.pi / 3, initial_speed = 3000.0 | units.km / units.s, initial_speed_perpendicular = 30.0 | units.km / units.s, number_of_sph_particles = 1000, t_end = 1.0e4 | units.s, sph_code = Fi, steps_per_snapshot = 4, snapshot_size = 100, use_stored_stellar_models = True ): """ masses: Mass of the two stars star_age: Initial age of the stars (if maximally_evolved_stars is False) maximally_evolved_stars: Evolve stars as far as the Stellar Evolution code can get number_of_sph_particles: Total number of particles of both stars, divided according to their masses t_end: (Physical, not computational) duration of the hydrodynamics simulation sph_code: Code to use for the hydrodynamics simulation steps_per_snapshot: A hydroplot snapshot is generated each time after this many steps (0 or None means no snapshots) snapshot_size: Size of the snapshot in pixels along one dimension use_stored_stellar_models: Flag to use previously stored stellar model files (for speed-up). """ # Convert some of the input parameters to string, for use in output file names: n_string = "n" + ("%1.0e"%(number_of_sph_particles)).replace("+0","").replace("+","") t_end_string = "t" + ("%1.0e"%(t_end.value_in(units.s))).replace("+0","").replace("+","") masses_string = ("m1_" + ("%0.3e"%(masses[0].value_in(units.MSun))).replace("+0","").replace("+","") + "_m2_" + ("%0.3e"%(masses[1].value_in(units.MSun))).replace("+0","").replace("+","")) if maximally_evolved_stars: star_age_string = "a_max" else: star_age_string = "a" + ("%0.3e"%(star_age.value_in(units.Myr))).replace("+0","").replace("+","") base_output_file_name = os.path.join(get_path_to_results(), "stellar_merger_"+n_string+"_"+t_end_string) pickle_file_1 = os.path.join(get_path_to_results(), "stellar_merger_"+masses_string+"_"+star_age_string+"_1.pkl") pickle_file_2 = os.path.join(get_path_to_results(), "stellar_merger_"+masses_string+"_"+star_age_string+"_2.pkl") if not use_stored_stellar_models or not (os.path.exists(pickle_file_1) and os.path.exists(pickle_file_2)): stars = Particles(2) stars.mass = masses try: stellar_evolution = MESA() stellar_evolution.initialize_code() except: print "MESA was not built. Returning." return stellar_evolution.commit_parameters() stellar_evolution.particles.add_particles(stars) stellar_evolution.commit_particles() if maximally_evolved_stars: try: while True: stellar_evolution.evolve_model() except AmuseException as exception: print exception else: stellar_evolution.evolve_model(star_age) if os.path.exists(pickle_file_1): print "Could not save stellar model 1: file already exists." else: pickle_stellar_model(stellar_evolution.particles[0], pickle_file_1) print "Stellar model 1 saved at:", pickle_file_1 if os.path.exists(pickle_file_2): print "Could not save stellar model 2: file already exists." else: pickle_stellar_model(stellar_evolution.particles[1], pickle_file_2) print "Stellar model 2 saved at:", pickle_file_2 stellar_evolution.stop() model_1 = StellarModel2SPH(None, None, pickle_file = pickle_file_1) model_2 = StellarModel2SPH(None, None, pickle_file = pickle_file_2) model_1.unpickle_stellar_structure() model_2.unpickle_stellar_structure() composition = model_2.composition_profile midpoints = model_2.midpoints_profile[1:-1] specific_internal_energy = model_2.specific_internal_energy_profile number_of_sph_particles_1 = int(round(number_of_sph_particles * (model_1.mass / (model_1.mass + model_2.mass)))) number_of_sph_particles_2 = number_of_sph_particles - number_of_sph_particles_1 print "Creating initial conditions from a MESA stellar evolution model:" print model_1.mass, "star consisting of", number_of_sph_particles_1, "particles." sph_particles_1 = convert_stellar_model_to_SPH( None, number_of_sph_particles_1, seed=12345, pickle_file = pickle_file_1 ).gas_particles print model_2.mass, "star consisting of", number_of_sph_particles_2, "particles." sph_particles_2 = convert_stellar_model_to_SPH( None, number_of_sph_particles_2, pickle_file = pickle_file_2 ).gas_particles initial_separation += model_1.radius + model_2.radius sph_particles_2.x += numpy.cos(angle) * initial_separation sph_particles_2.y += numpy.sin(angle) * initial_separation sph_particles_1.vx += numpy.cos(angle) * initial_speed - numpy.sin(angle) * initial_speed_perpendicular sph_particles_1.vy += numpy.cos(angle) * initial_speed_perpendicular + numpy.sin(angle) * initial_speed view = [-0.5, 0.5, -0.5, 0.5] * (initial_separation + model_1.radius + model_2.radius) all_sph_particles = ParticlesSuperset([sph_particles_1, sph_particles_2]) all_sph_particles.move_to_center() unit_converter = ConvertBetweenGenericAndSiUnits(1.0 | units.RSun, constants.G, t_end) hydro_legacy_code = sph_code(unit_converter) n_steps = 100 hydro_legacy_code.parameters.n_smooth = 96 try: hydro_legacy_code.parameters.timestep = t_end / n_steps except Exception as exc: if not "parameter is read-only" in str(exc): raise hydro_legacy_code.gas_particles.add_particles(all_sph_particles) times = [] | units.Myr kinetic_energies = [] | units.J potential_energies = [] | units.J thermal_energies = [] | units.J print "Evolving to:", t_end for time, i_step in [(i*t_end/n_steps, i) for i in range(1, n_steps+1)]: hydro_legacy_code.evolve_model(time) times.append(time) kinetic_energies.append( hydro_legacy_code.kinetic_energy) potential_energies.append( hydro_legacy_code.potential_energy) thermal_energies.append( hydro_legacy_code.thermal_energy) if steps_per_snapshot and (not i_step % steps_per_snapshot): hydro_plot( view, hydro_legacy_code, (snapshot_size, snapshot_size), base_output_file_name + "_hydro_image{0:=03}.png".format(i_step) ) hydro_legacy_code.gas_particles.new_channel_to(all_sph_particles).copy_attributes( ['mass', 'x','y','z', 'vx','vy','vz', 'u']) center_of_mass = all_sph_particles.center_of_mass().as_quantity_in(units.RSun) center_of_mass_velocity = all_sph_particles.center_of_mass_velocity().as_quantity_in(units.km / units.s) print print "center_of_mass:", center_of_mass print "center_of_mass_velocity:", center_of_mass_velocity all_sph_particles.position -= center_of_mass sph_midpoints = all_sph_particles.position.lengths() energy_plot( times, kinetic_energies, potential_energies, thermal_energies, base_output_file_name+"_energy_evolution.png" ) thermal_energy_plot( times, thermal_energies, base_output_file_name+"_thermal_energy_evolution.png" ) composition_comparison_plot( midpoints, composition[0], sph_midpoints, all_sph_particles.h1, base_output_file_name+"_composition_h1.png" ) internal_energy_comparison_plot( midpoints, specific_internal_energy, sph_midpoints, all_sph_particles.u, base_output_file_name+"_new_u.png" ) hydro_plot( [-2.0, 2.0, -2.0, 2.0] | units.RSun, hydro_legacy_code, (100, 100), base_output_file_name + "_hydro_image.png" ) hydro_legacy_code.stop() print "All done!\n"
def head_on_stellar_merger( masses=[0.3, 3.0] | units.MSun, star_age=310.0 | units.Myr, maximally_evolved_stars=False, initial_separation=4.0 | units.RSun, angle=numpy.pi / 3, initial_speed=3000.0 | units.km / units.s, initial_speed_perpendicular=30.0 | units.km / units.s, number_of_sph_particles=1000, t_end=1.0e4 | units.s, sph_code=Fi, steps_per_snapshot=4, snapshot_size=100, use_stored_stellar_models=True ): """ masses: Mass of the two stars star_age: Initial age of the stars (if maximally_evolved_stars is False) maximally_evolved_stars: Evolve stars as far as the Stellar Evolution code can get number_of_sph_particles: Total number of particles of both stars, divided according to their masses t_end: (Physical, not computational) duration of the hydrodynamics simulation sph_code: Code to use for the hydrodynamics simulation steps_per_snapshot: A hydroplot snapshot is generated each time after this many steps (0 or None means no snapshots) snapshot_size: Size of the snapshot in pixels along one dimension use_stored_stellar_models: Flag to use previously stored stellar model files (for speed-up). """ # Convert some of the input parameters to string, for use in output file # names: n_string = "n" + ("%1.0e" % (number_of_sph_particles) ).replace("+0", "").replace("+", "") t_end_string = "t" + ("%1.0e" % (t_end.value_in(units.s)) ).replace("+0", "").replace("+", "") masses_string = ( "m1_" + ( "%0.3e" % (masses[0].value_in(units.MSun)) ).replace("+0", "").replace("+", "") + "_m2_" + ( "%0.3e" % (masses[1].value_in(units.MSun)) ).replace("+0", "").replace("+", "") ) if maximally_evolved_stars: star_age_string = "a_max" else: star_age_string = "a" + \ ("%0.3e" % (star_age.value_in(units.Myr))).replace( "+0", "").replace("+", "") base_output_file_name = os.path.join( get_path_to_results(), "stellar_merger_"+n_string+"_"+t_end_string) pickle_file_1 = os.path.join(get_path_to_results( ), "stellar_merger_"+masses_string+"_"+star_age_string+"_1.pkl") pickle_file_2 = os.path.join(get_path_to_results( ), "stellar_merger_"+masses_string+"_"+star_age_string+"_2.pkl") if not use_stored_stellar_models or not (os.path.exists(pickle_file_1) and os.path.exists(pickle_file_2)): stars = Particles(2) stars.mass = masses try: stellar_evolution = MESA() stellar_evolution.initialize_code() except: print("MESA was not built. Returning.") return stellar_evolution.commit_parameters() stellar_evolution.particles.add_particles(stars) stellar_evolution.commit_particles() if maximally_evolved_stars: try: while True: stellar_evolution.evolve_model() except AmuseException as exception: print(exception) else: stellar_evolution.evolve_model(star_age) if os.path.exists(pickle_file_1): print("Could not save stellar model 1: file already exists.") else: pickle_stellar_model(stellar_evolution.particles[0], pickle_file_1) print("Stellar model 1 saved at:", pickle_file_1) if os.path.exists(pickle_file_2): print("Could not save stellar model 2: file already exists.") else: pickle_stellar_model(stellar_evolution.particles[1], pickle_file_2) print("Stellar model 2 saved at:", pickle_file_2) stellar_evolution.stop() model_1 = StellarModel2SPH(None, None, pickle_file=pickle_file_1) model_2 = StellarModel2SPH(None, None, pickle_file=pickle_file_2) model_1.unpickle_stellar_structure() model_2.unpickle_stellar_structure() composition = model_2.composition_profile midpoints = model_2.midpoints_profile[1:-1] specific_internal_energy = model_2.specific_internal_energy_profile number_of_sph_particles_1 = int( round( number_of_sph_particles * (model_1.mass / (model_1.mass + model_2.mass)) ) ) number_of_sph_particles_2 = ( number_of_sph_particles - number_of_sph_particles_1 ) print("Creating initial conditions from a MESA stellar evolution model:") print( model_1.mass, "star consisting of", number_of_sph_particles_1, "particles." ) sph_particles_1 = convert_stellar_model_to_SPH( None, number_of_sph_particles_1, seed=12345, pickle_file = pickle_file_1 ).gas_particles print( model_2.mass, "star consisting of", number_of_sph_particles_2, "particles." ) sph_particles_2 = convert_stellar_model_to_SPH( None, number_of_sph_particles_2, pickle_file=pickle_file_2 ).gas_particles initial_separation += model_1.radius + model_2.radius sph_particles_2.x += numpy.cos(angle) * initial_separation sph_particles_2.y += numpy.sin(angle) * initial_separation sph_particles_1.vx += ( numpy.cos(angle) * initial_speed - numpy.sin(angle) * initial_speed_perpendicular ) sph_particles_1.vy += ( numpy.cos(angle) * initial_speed_perpendicular + numpy.sin(angle) * initial_speed ) view = ( [-0.5, 0.5, -0.5, 0.5] * (initial_separation + model_1.radius + model_2.radius) ) all_sph_particles = ParticlesSuperset([sph_particles_1, sph_particles_2]) all_sph_particles.move_to_center() unit_converter = ConvertBetweenGenericAndSiUnits( 1.0 | units.RSun, constants.G, t_end) hydro_legacy_code = sph_code(unit_converter) n_steps = 100 hydro_legacy_code.parameters.n_smooth = 96 try: hydro_legacy_code.parameters.timestep = t_end / n_steps except Exception as exc: if "parameter is read-only" not in str(exc): raise hydro_legacy_code.gas_particles.add_particles(all_sph_particles) times = [] | units.Myr kinetic_energies = [] | units.J potential_energies = [] | units.J thermal_energies = [] | units.J print("Evolving to:", t_end) for time, i_step in [(i*t_end/n_steps, i) for i in range(1, n_steps+1)]: hydro_legacy_code.evolve_model(time) times.append(time) kinetic_energies.append(hydro_legacy_code.kinetic_energy) potential_energies.append(hydro_legacy_code.potential_energy) thermal_energies.append(hydro_legacy_code.thermal_energy) if steps_per_snapshot and (not i_step % steps_per_snapshot): hydro_plot( view, hydro_legacy_code, (snapshot_size, snapshot_size), base_output_file_name + "_hydro_image{0:=03}.png".format(i_step) ) hydro_legacy_code.gas_particles.new_channel_to( all_sph_particles ).copy_attributes( ['mass', 'x', 'y', 'z', 'vx', 'vy', 'vz', 'u'] ) center_of_mass = all_sph_particles.center_of_mass( ).as_quantity_in(units.RSun) center_of_mass_velocity = all_sph_particles.center_of_mass_velocity( ).as_quantity_in(units.km / units.s) print() print("center_of_mass:", center_of_mass) print("center_of_mass_velocity:", center_of_mass_velocity) all_sph_particles.position -= center_of_mass sph_midpoints = all_sph_particles.position.lengths() energy_plot( times, kinetic_energies, potential_energies, thermal_energies, base_output_file_name+"_energy_evolution.png" ) thermal_energy_plot( times, thermal_energies, base_output_file_name+"_thermal_energy_evolution.png" ) composition_comparison_plot( midpoints, composition[0], sph_midpoints, all_sph_particles.h1, base_output_file_name+"_composition_h1.png" ) internal_energy_comparison_plot( midpoints, specific_internal_energy, sph_midpoints, all_sph_particles.u, base_output_file_name+"_new_u.png" ) hydro_plot( [-2.0, 2.0, -2.0, 2.0] | units.RSun, hydro_legacy_code, (100, 100), base_output_file_name + "_hydro_image.png" ) hydro_legacy_code.stop() print("All done!\n")