Example #1
0
def chicago_northwest():
    polys = chicago.get_chicago_side_polys()
    nw = polys['Northwest']
    r = pp_models.SeppStochasticNn.from_pickle('/home/gabriel/data/chicago_northwest/burglary/vary_num_nn/nn_100_15.pickle')

    pp_plotting.multiplots(r)
    pp_plotting.prediction_heatmap(r, int(r.data.time.toarray()[-1]) + 1.0,
                                   poly=nw,
                                   dx=30,
                                   fmax=0.99,
                                   cmap='Reds')
    plt.axis('equal')
Example #2
0
def plot_hit_rate_array(res, max_cover=0.2, min_difference=0.01, save=True):
    domains = chicago.get_chicago_side_polys(as_shapely=True)
    chicago_poly = chicago.compute_chicago_region(
        as_shapely=True).simplify(1000)

    for ct in CRIME_TYPES:

        fig, axs = plt.subplots(3,
                                3,
                                figsize=(10, 8),
                                sharex=False,
                                sharey=False)

        for i, r in enumerate(REGIONS):
            ax_j = np.mod(i, 3)
            ax_i = i / 3
            ax = axs[ax_i, ax_j]

            this_res = res[FILE_FRIENDLY_REGIONS[r]][ct]
            try:
                plot_wilcox_test_hit_rate(this_res,
                                          ax=ax,
                                          max_cover=max_cover,
                                          min_difference=min_difference)
            except KeyError:
                continue

            if ax_i != 2:
                ax.set_xticks([])
            if ax_j != 0:
                ax.set_yticks([])

        for i in range(len(REGIONS)):
            axs.flat[i].set_xlim([0., max_cover])
            axs.flat[i].set_ylim([0., 1.])

        big_ax = fig.add_subplot(111)
        big_ax.spines['top'].set_color('none')
        big_ax.spines['bottom'].set_color('none')
        big_ax.spines['left'].set_color('none')
        big_ax.spines['right'].set_color('none')
        big_ax.set_xticks([])
        big_ax.set_yticks([])
        big_ax.tick_params(labelcolor='w',
                           top='off',
                           bottom='off',
                           left='off',
                           right='off')
        big_ax.set_xlabel('Coverage')
        big_ax.set_ylabel('Hit rate')
        big_ax.patch.set_visible(False)

        plt.tight_layout(pad=1.5, h_pad=0.25, w_pad=0.5)
        big_ax.set_position([0.05, 0.05, 0.95, 0.9])

        inset_pad = 0.01  # proportion of parent axis width or height
        inset_width_ratio = 0.35
        inset_height_ratio = 0.55

        for i, r in enumerate(REGIONS):
            ax_j = np.mod(i, 3)
            ax_i = i / 3
            ax = axs[ax_i, ax_j]
            ax_bbox = ax.get_position()
            inset_bbox = [
                ax_bbox.x0 + inset_pad * ax_bbox.width,
                ax_bbox.y1 - (inset_pad + inset_height_ratio) * ax_bbox.height,
                inset_width_ratio * ax_bbox.width,
                inset_height_ratio * ax_bbox.height,
            ]
            inset_ax = fig.add_axes(inset_bbox)
            chicago.plot_domain(chicago_poly,
                                sub_domain=domains[r],
                                ax=inset_ax)

        if save:
            filename = 'chicago_ani_iso_kde_hit_rate_%s' % ct
            fig.savefig(filename + '.png', dpi=200)
            fig.savefig(filename + '.pdf')

def generate_angle_filters(phi):
    phi_width = [sum(t[1::2]) for t in phi]
    phi_filters = [phi_filter_factory(*t) for t in phi]
    return phi_filters, phi_width


if __name__ == '__main__':

    max_d = 100
    geos_simplification = 20  # metres tolerance factor
    n_sim = 100
    start_date = datetime.date(2011, 3, 1)
    end_date = start_date + datetime.timedelta(days=366)
    domains = chicago.get_chicago_side_polys(as_shapely=True)

    # define a vector of threshold distances
    u = np.linspace(0, max_d, 400)
    phi = [((2 * i + 1) * np.pi / 8, np.pi / 4.) for i in range(8)]

    domain_mapping = {
        'chicago_south': 'South',
        'chicago_southwest': 'Southwest',
        'chicago_west': 'West',
        'chicago_northwest': 'Northwest',
        'chicago_north': 'North',
        'chicago_central': 'Central',
        'chicago_far_north': 'Far North',
        'chicago_far_southwest': 'Far Southwest',
        'chicago_far_southeast': 'Far Southeast',
def plot_spatial_ellipse_array(res, icdf=0.95, max_d=800., save=True):
    """
    Plot the ellipsoids containing icdf of the spatial triggering density
    :param res: Results dict, including model
    :param icdf: The proportion of spatial density in each dimension contained within the ellipse boundary
    :param max_d: The axis maximum value. This is increased automatically if it is too small to contain any of the
    ellipses.
    :return:
    """
    icdf_two_tailed = 0.5 + icdf / 2.
    domains = chicago.get_chicago_side_polys(as_shapely=True)
    colour_mapping = {
        # 'ani_norm': 'k',
        'ani_refl': 'r',
        'iso_refl': 'k',
    }
    loc = plticker.MultipleLocator(base=400.0) # this locator puts ticks at regular intervals
    abbreviated_regions = {
        'South': 'S',
        'Southwest': 'SW',
        'West': 'W',
        'Northwest': 'NW',
        'North': 'N',
        'Central': 'C',
        'Far North': 'FN',
        'Far Southwest': 'FSW',
        'Far Southeast': 'FSE',
    }

    for ct in CRIME_TYPES:
        fig, axs = plt.subplots(3, 3, sharex=True, sharey=True, figsize=(8, 8))
        for i, r in enumerate(REGIONS):
            ax_j = np.mod(i, 3)
            ax_i = i / 3
            ax = axs[ax_i, ax_j]
            dom = domains[r]
            for m in ('ani_refl', 'iso_refl'):
                try:
                    k = res[FILE_FRIENDLY_REGIONS[r]][ct][m]['model'].trigger_kde
                    if k.ndim == 3:
                        a = k.marginal_icdf(icdf_two_tailed, dim=1)
                        b = k.marginal_icdf(icdf_two_tailed, dim=2)
                        coords = get_ellipse_coords(a=a, b=b)
                        max_d = max(max(a, b), max_d)
                    else:
                        a = k.marginal_icdf(icdf, dim=1)
                        coords = get_ellipse_coords(a, a)
                        max_d = max(a, max_d)
                    ax.plot(coords[:, 0], coords[:, 1], colour_mapping[m])

                except Exception as exc:
                    print repr(exc)
            ax.text(0.04, 0.86, abbreviated_regions[r], fontsize=14, transform=ax.transAxes)

        for ax in axs.flat:
            ax.set_xlim([-max_d, max_d])
            ax.set_ylim([-max_d, max_d])
            ax.xaxis.set_major_locator(loc)
            ax.yaxis.set_major_locator(loc)
            ax.set_aspect('equal', adjustable='box-forced')

        plt.tight_layout(h_pad=0.2, w_pad=0.2)

        big_ax = fig.add_subplot(111)
        big_ax.spines['top'].set_color('none')
        big_ax.spines['bottom'].set_color('none')
        big_ax.spines['left'].set_color('none')
        big_ax.spines['right'].set_color('none')
        big_ax.set_xticks([])
        big_ax.set_yticks([])
        big_ax.tick_params(labelcolor='w', top='off', bottom='off', left='off', right='off')
        big_ax.set_xlabel(r'$\Delta x$')
        big_ax.set_ylabel(r'$\Delta y$')
        big_ax.patch.set_visible(False)

        big_ax.set_position([0.05, 0.05, 0.95, 0.9])

        if save:
            filename = "chicago_triggering_spatial_ellipse_%s" % ct
            fig.savefig(filename + '.png', dpi=200)
            fig.savefig(filename + '.pdf')
        'max_delta_t': 90,
        'max_delta_d': 500,
        'bg_kde_kwargs': {'number_nn': [100, 15],
                          'min_bandwidth': None,
                          'strict': False},
        'trigger_kde_kwargs': {'number_nn': 15,
                               'min_bandwidth': [1., 50., 50.],
                               'strict': False},
        'estimation_function': lambda x, y: estimation.estimator_exp_gaussian(x, y, **estimate_kwargs),
        'seed': 42,  # doesn't matter what this is, just want it fixed
        'remove_coincident_pairs': False
    }

    pred_include = ('full_static',)  # only use this method for prediction

    domain = chicago.get_chicago_side_polys()[side_name]
    data, t0, cid = chicago.get_crimes_by_type(start_date=start_date,
                                               end_date=end_date,
                                               domain=domain)

    r = models.SeppStochasticNnReflected(data=data, **model_kwargs)
    ps = r.train(niter=niter)

    # marginal triggering
    t = np.linspace(0, 90, 500)
    x = np.linspace(-500, 500, 500)
    zt = r.trigger_kde.marginal_pdf(t, dim=0, normed=False) / float(r.ndata)
    zti = np.cumsum(zt) * (t[1] - t[0])  # numerical integral
    zx = r.trigger_kde.marginal_pdf(x, dim=1, normed=False) / float(r.ndata)

    fig = plt.figure(figsize=(6, 5))
Example #6
0
__author__ = 'gabriel'
from django.db import connection
from analysis import chicago
import datetime
import numpy as np
from time import time

from database.models import Chicago
from data.models import CartesianSpaceTimeData
from kde import models as kde_models

SRID = 2028

start_date = datetime.date(2011, 3, 1)
end_date = start_date + datetime.timedelta(days=366)
domain = chicago.get_chicago_side_polys(as_shapely=True)['South'].simplify(1)
crime_type = 'burglary'

max_d = 500
max_t = 90




class Stik(object):

    table_name = Chicago._meta.db_table
    kde_class = kde_models.VariableBandwidthNnKdeSeparable

    def __init__(self,
                 max_t,
Example #7
0
def anisotropy_array_plot(save=True, max_d=None, add_rose=True):
    """
    Not really a flexible method, more a way to isolate this plotting function
    If max_d is not specified, the full range is used.
    """
    OUTDIR = '/home/gabriel/Dropbox/research/output/ripley_anisotropy/'
    domains = chicago.get_chicago_side_polys(as_shapely=True)
    chicago_poly = chicago.compute_chicago_region(
        as_shapely=True).simplify(1000)

    CRIME_TYPES = (
        'burglary',
        'assault',
    )

    from matplotlib import pyplot as plt

    # Define phi combinations. This corresponds to inversion through the origin.
    combinations = [
        (3, 7),
        (0, 4),
        (1, 5),
        (2, 6),
    ]
    colours = ('k', 'k', 'r', 'r')
    linestyles = ('solid', 'dashed', 'solid', 'dashed')

    for ct in CRIME_TYPES:
        k_obs_dict = collections.defaultdict(dict)
        k_sim_dict = collections.defaultdict(dict)
        fig, axs = plt.subplots(3, 3, figsize=(10, 8))

        running_max = 0
        for i, r in enumerate(chicago_consts.REGIONS):
            rff = chicago_consts.FILE_FRIENDLY_REGIONS[r]
            ax_j = np.mod(i, 3)
            ax_i = i / 3
            ax = axs[ax_i, ax_j]
            infile = os.path.join(OUTDIR, 'ripley_%s_%s.pickle' % (rff, ct))
            with open(infile, 'r') as f:
                res = dill.load(f)
            k_obs_dict[ct][r] = res['k_obs']
            k_sim_dict[ct][r] = res['k_sim']
            u = res['u']
            if max_d is not None:
                idx = u <= max_d
                u = u[idx]
            for j, c in enumerate(combinations):
                ls = linestyles[np.mod(j, len(linestyles))]
                col = colours[np.mod(j, len(colours))]
                this_k_obs = res['k_obs'][:, c].sum(axis=1)
                if max_d is not None:
                    this_k_obs = this_k_obs[idx]
                running_max = max(running_max, this_k_obs.max())
                ax.plot(u, this_k_obs, c=col, linestyle=ls)
            # pick any simulated K - all angles look the same at this scale
            this_k_sim = res['k_sim'][:, :, :len(c)].sum(axis=2)
            if max_d is not None:
                this_k_sim = this_k_sim[:, idx]
            y0 = this_k_sim.min(axis=0)
            y1 = this_k_sim.max(axis=0)
            running_max = max(running_max, y1.max())
            ax.fill_between(u,
                            y0,
                            y1,
                            facecolor='k',
                            edgecolor='none',
                            alpha=0.4)

            if ax_i != 2:
                ax.set_xticklabels([])
            if ax_j != 0:
                ax.set_yticklabels([])

        for i in range(len(chicago_consts.REGIONS)):
            axs.flat[i].set_ylim([0, running_max * 1.02])
            # axs.flat[i].text(3, 0.9 * running_max, domain_mapping[REGIONS[i]])

        big_ax = fig.add_subplot(111)
        big_ax.spines['top'].set_color('none')
        big_ax.spines['bottom'].set_color('none')
        big_ax.spines['left'].set_color('none')
        big_ax.spines['right'].set_color('none')
        big_ax.set_xticks([])
        big_ax.set_yticks([])
        big_ax.tick_params(labelcolor='w',
                           top='off',
                           bottom='off',
                           left='off',
                           right='off')
        big_ax.set_xlabel('Distance (m)')
        big_ax.set_ylabel('Anisotropic Ripley' 's K')
        big_ax.patch.set_visible(False)

        plt.tight_layout(pad=1.5, h_pad=0.05, w_pad=0.05)
        big_ax.set_position([0.05, 0.05, 0.95, 0.9])

        inset_pad = 0.01  # proportion of parent axis width or height
        inset_width_ratio = 0.35
        inset_height_ratio = 0.55

        for i in range(len(chicago_consts.REGIONS)):
            ax_j = np.mod(i, 3)
            ax_i = i / 3
            ax = axs[ax_i, ax_j]
            ax_bbox = ax.get_position()
            inset_bbox = [
                ax_bbox.x0 + inset_pad * ax_bbox.width,
                ax_bbox.y1 - (inset_pad + inset_height_ratio) * ax_bbox.height,
                inset_width_ratio * ax_bbox.width,
                inset_height_ratio * ax_bbox.height,
            ]
            inset_ax = fig.add_axes(inset_bbox)
            chicago.plot_domain(chicago_poly,
                                sub_domain=domains[chicago_consts.REGIONS[i]],
                                ax=inset_ax)

        if add_rose:
            rose_width = 0.45
            phi = [((2 * i + 1) * np.pi / 8, np.pi / 4.) for i in range(8)]
            ax = axs[0, 2]  # top right axis
            ax_bbox = ax.get_position()
            inset_bbox = [
                ax_bbox.x1 - (inset_pad + rose_width) * ax_bbox.width,
                ax_bbox.y1 - (inset_pad + rose_width) * ax_bbox.height,
                rose_width * ax_bbox.width,
                rose_width * ax_bbox.height,
            ]
            inset_ax = fig.add_axes(inset_bbox, projection='polar')
            rose_plot(phi, combinations, ax=inset_ax)

        if save:
            fig.savefig('ripley_k_anisotropic_with_inset_%s.png' % ct, dpi=150)
            fig.savefig('ripley_k_anisotropic_with_inset_%s.pdf' % ct)