Example #1
0
    def setUpClass(cls):
        super(TestGPRGP, cls).setUpClass()
        boston = datasets.load_boston()
        data = boston['data']
        X_train = data[0:500]
        X_test = data[500:501]
        y_train = boston['target'][0:500].reshape(500, 1)
        X_min = np.min(X_train, 0)
        X_max = np.max(X_train, 0)

        random.seed(0)
        np.random.seed(0)
        tf.set_random_seed(0)

        model_kwargs = {}
        opt_kwargs = {}
        opt_kwargs['learning_rate'] = 0.01
        opt_kwargs['maxiter'] = 10
        opt_kwargs['bounds'] = [X_min, X_max]
        opt_kwargs['ucb_beta'] = 1.0

        tf.reset_default_graph()
        graph = tf.get_default_graph()
        gpflow.reset_default_session(graph=graph)
        cls.m = gpr_models.create_model('BasicGP',
                                        X=X_train,
                                        y=y_train,
                                        **model_kwargs)
        cls.gpr_result = tf_optimize(cls.m.model, X_test, **opt_kwargs)
Example #2
0
    def setUpClass(cls):
        super(TestGPRGPFlow, cls).setUpClass()
        boston = datasets.load_boston()
        data = boston['data']
        X_train = data[0:500]
        X_test = data[500:]
        y_train = boston['target'][0:500].reshape(500, 1)

        model_kwargs = {'lengthscales': 1, 'variance': 1, 'noise_variance': 1}
        tf.reset_default_graph()
        graph = tf.get_default_graph()
        gpflow.reset_default_session(graph=graph)
        cls.m = gpr_models.create_model('BasicGP', X=X_train, y=y_train,
                                        **model_kwargs)
        cls.gpr_result = gpflow_predict(cls.m.model, X_test)
Example #3
0
def run_optimize(X, y, X_sample, model_name, opt_kwargs, model_kwargs):
    timer = TimerStruct()

    # Create model (this also optimizes the hyperparameters if that option is enabled
    timer.start()
    m = gpr_models.create_model(model_name, X=X, y=y, **model_kwargs)
    timer.stop()
    model_creation_sec = timer.elapsed_seconds
    LOG.info(m._model.as_pandas_table())

    # Optimize the DBMS's configuration knobs
    timer.start()
    X_new, ypred, yvar, loss = tf_optimize(m._model, X_sample, **opt_kwargs)
    timer.stop()
    config_optimize_sec = timer.elapsed_seconds

    return X_new, ypred, m.get_model_parameters(), m.get_hyperparameters()
Example #4
0
def run_optimize(X, y, X_samples, model_name, opt_kwargs, model_kwargs):
    timer = TimerStruct()

    # Create model (this also optimizes the hyperparameters if that option is enabled
    timer.start()
    tf.reset_default_graph()
    graph = tf.get_default_graph()
    gpflow.reset_default_session(graph=graph)
    m = gpr_models.create_model(model_name, X=X, y=y, **model_kwargs)
    timer.stop()
    model_creation_sec = timer.elapsed_seconds
    LOG.info(m.model.as_pandas_table())

    # Optimize the DBMS's configuration knobs
    timer.start()
    res = tf_optimize(m.model, X_samples, **opt_kwargs)
    timer.stop()
    config_optimize_sec = timer.elapsed_seconds

    return res.minl_conf, res.minl, m.get_model_parameters(), m.get_hyperparameters()
Example #5
0
def configuration_recommendation(recommendation_input):
    target_data, algorithm = recommendation_input
    LOG.info('configuration_recommendation called')

    if target_data['bad'] is True:
        target_data_res = dict(
            status='bad',
            result_id=target_data['newest_result_id'],
            info='WARNING: no training data, the config is generated randomly',
            recommendation=target_data['config_recommend'],
            pipeline_run=target_data['pipeline_run'])
        LOG.debug('%s: Skipping configuration recommendation.\n\ndata=%s\n',
                  AlgorithmType.name(algorithm),
                  JSONUtil.dumps(target_data, pprint=True))
        return target_data_res

    # Load mapped workload data
    mapped_workload_id = target_data['mapped_workload'][0]

    latest_pipeline_run = PipelineRun.objects.get(
        pk=target_data['pipeline_run'])
    mapped_workload = Workload.objects.get(pk=mapped_workload_id)
    workload_knob_data = PipelineData.objects.get(
        pipeline_run=latest_pipeline_run,
        workload=mapped_workload,
        task_type=PipelineTaskType.KNOB_DATA)
    workload_knob_data = JSONUtil.loads(workload_knob_data.data)
    workload_metric_data = PipelineData.objects.get(
        pipeline_run=latest_pipeline_run,
        workload=mapped_workload,
        task_type=PipelineTaskType.METRIC_DATA)
    workload_metric_data = JSONUtil.loads(workload_metric_data.data)

    newest_result = Result.objects.get(pk=target_data['newest_result_id'])
    cleaned_workload_knob_data = clean_knob_data(
        workload_knob_data["data"], workload_knob_data["columnlabels"],
        newest_result.session)

    X_workload = np.array(cleaned_workload_knob_data[0])
    X_columnlabels = np.array(cleaned_workload_knob_data[1])
    y_workload = np.array(workload_metric_data['data'])
    y_columnlabels = np.array(workload_metric_data['columnlabels'])
    rowlabels_workload = np.array(workload_metric_data['rowlabels'])

    # Target workload data
    newest_result = Result.objects.get(pk=target_data['newest_result_id'])
    X_target = target_data['X_matrix']
    y_target = target_data['y_matrix']
    rowlabels_target = np.array(target_data['rowlabels'])

    if not np.array_equal(X_columnlabels, target_data['X_columnlabels']):
        raise Exception(('The workload and target data should have '
                         'identical X columnlabels (sorted knob names)'))
    if not np.array_equal(y_columnlabels, target_data['y_columnlabels']):
        raise Exception(('The workload and target data should have '
                         'identical y columnlabels (sorted metric names)'))

    # Filter Xs by top 10 ranked knobs
    ranked_knobs = PipelineData.objects.get(
        pipeline_run=latest_pipeline_run,
        workload=mapped_workload,
        task_type=PipelineTaskType.RANKED_KNOBS)
    ranked_knobs = JSONUtil.loads(ranked_knobs.data)[:IMPORTANT_KNOB_NUMBER]
    ranked_knob_idxs = [
        i for i, cl in enumerate(X_columnlabels) if cl in ranked_knobs
    ]
    X_workload = X_workload[:, ranked_knob_idxs]
    X_target = X_target[:, ranked_knob_idxs]
    X_columnlabels = X_columnlabels[ranked_knob_idxs]

    # Filter ys by current target objective metric
    target_objective = newest_result.session.target_objective
    target_obj_idx = [
        i for i, cl in enumerate(y_columnlabels) if cl == target_objective
    ]
    if len(target_obj_idx) == 0:
        raise Exception(('Could not find target objective in metrics '
                         '(target_obj={})').format(target_objective))
    elif len(target_obj_idx) > 1:
        raise Exception(
            ('Found {} instances of target objective in '
             'metrics (target_obj={})').format(len(target_obj_idx),
                                               target_objective))

    metric_meta = db.target_objectives.get_metric_metadata(
        newest_result.session.dbms.pk, newest_result.session.target_objective)
    lessisbetter = metric_meta[
        target_objective].improvement == db.target_objectives.LESS_IS_BETTER

    y_workload = y_workload[:, target_obj_idx]
    y_target = y_target[:, target_obj_idx]
    y_columnlabels = y_columnlabels[target_obj_idx]

    # Combine duplicate rows in the target/workload data (separately)
    X_workload, y_workload, rowlabels_workload = DataUtil.combine_duplicate_rows(
        X_workload, y_workload, rowlabels_workload)
    X_target, y_target, rowlabels_target = DataUtil.combine_duplicate_rows(
        X_target, y_target, rowlabels_target)

    # Delete any rows that appear in both the workload data and the target
    # data from the workload data
    dups_filter = np.ones(X_workload.shape[0], dtype=bool)
    target_row_tups = [tuple(row) for row in X_target]
    for i, row in enumerate(X_workload):
        if tuple(row) in target_row_tups:
            dups_filter[i] = False
    X_workload = X_workload[dups_filter, :]
    y_workload = y_workload[dups_filter, :]
    rowlabels_workload = rowlabels_workload[dups_filter]

    # Combine target & workload Xs for preprocessing
    X_matrix = np.vstack([X_target, X_workload])

    # Dummy encode categorial variables
    categorical_info = DataUtil.dummy_encoder_helper(X_columnlabels,
                                                     mapped_workload.dbms)
    dummy_encoder = DummyEncoder(categorical_info['n_values'],
                                 categorical_info['categorical_features'],
                                 categorical_info['cat_columnlabels'],
                                 categorical_info['noncat_columnlabels'])
    X_matrix = dummy_encoder.fit_transform(X_matrix)

    # below two variables are needed for correctly determing max/min on dummies
    binary_index_set = set(categorical_info['binary_vars'])
    total_dummies = dummy_encoder.total_dummies()

    # Scale to N(0, 1)
    X_scaler = StandardScaler()
    X_scaled = X_scaler.fit_transform(X_matrix)
    if y_target.shape[0] < 5:  # FIXME
        # FIXME (dva): if there are fewer than 5 target results so far
        # then scale the y values (metrics) using the workload's
        # y_scaler. I'm not sure if 5 is the right cutoff.
        y_target_scaler = None
        y_workload_scaler = StandardScaler()
        y_matrix = np.vstack([y_target, y_workload])
        y_scaled = y_workload_scaler.fit_transform(y_matrix)
    else:
        # FIXME (dva): otherwise try to compute a separate y_scaler for
        # the target and scale them separately.
        try:
            y_target_scaler = StandardScaler()
            y_workload_scaler = StandardScaler()
            y_target_scaled = y_target_scaler.fit_transform(y_target)
            y_workload_scaled = y_workload_scaler.fit_transform(y_workload)
            y_scaled = np.vstack([y_target_scaled, y_workload_scaled])
        except ValueError:
            y_target_scaler = None
            y_workload_scaler = StandardScaler()
            y_scaled = y_workload_scaler.fit_transform(y_target)

    # Set up constraint helper
    constraint_helper = ParamConstraintHelper(
        scaler=X_scaler,
        encoder=dummy_encoder,
        binary_vars=categorical_info['binary_vars'],
        init_flip_prob=INIT_FLIP_PROB,
        flip_prob_decay=FLIP_PROB_DECAY)

    # FIXME (dva): check if these are good values for the ridge
    # ridge = np.empty(X_scaled.shape[0])
    # ridge[:X_target.shape[0]] = 0.01
    # ridge[X_target.shape[0]:] = 0.1

    # FIXME: we should generate more samples and use a smarter sampling
    # technique
    num_samples = NUM_SAMPLES
    X_samples = np.empty((num_samples, X_scaled.shape[1]))
    X_min = np.empty(X_scaled.shape[1])
    X_max = np.empty(X_scaled.shape[1])
    X_scaler_matrix = np.zeros([1, X_scaled.shape[1]])

    session_knobs = SessionKnob.objects.get_knobs_for_session(
        newest_result.session)

    # Set min/max for knob values
    for i in range(X_scaled.shape[1]):
        if i < total_dummies or i in binary_index_set:
            col_min = 0
            col_max = 1
        else:
            col_min = X_scaled[:, i].min()
            col_max = X_scaled[:, i].max()
            for knob in session_knobs:
                if X_columnlabels[i] == knob["name"]:
                    X_scaler_matrix[0][i] = knob["minval"]
                    col_min = X_scaler.transform(X_scaler_matrix)[0][i]
                    X_scaler_matrix[0][i] = knob["maxval"]
                    col_max = X_scaler.transform(X_scaler_matrix)[0][i]
        X_min[i] = col_min
        X_max[i] = col_max
        X_samples[:, i] = np.random.rand(num_samples) * (col_max -
                                                         col_min) + col_min

    # Maximize the throughput, moreisbetter
    # Use gradient descent to minimize -throughput
    if not lessisbetter:
        y_scaled = -y_scaled

    q = queue.PriorityQueue()
    for x in range(0, y_scaled.shape[0]):
        q.put((y_scaled[x][0], x))

    i = 0
    while i < TOP_NUM_CONFIG:
        try:
            item = q.get_nowait()
            # Tensorflow get broken if we use the training data points as
            # starting points for GPRGD. We add a small bias for the
            # starting points. GPR_EPS default value is 0.001
            # if the starting point is X_max, we minus a small bias to
            # make sure it is within the range.
            dist = sum(np.square(X_max - X_scaled[item[1]]))
            if dist < 0.001:
                X_samples = np.vstack(
                    (X_samples, X_scaled[item[1]] - abs(GPR_EPS)))
            else:
                X_samples = np.vstack(
                    (X_samples, X_scaled[item[1]] + abs(GPR_EPS)))
            i = i + 1
        except queue.Empty:
            break

    session = newest_result.session
    res = None

    if algorithm == AlgorithmType.DNN:
        # neural network model
        model_nn = NeuralNet(n_input=X_samples.shape[1],
                             batch_size=X_samples.shape[0],
                             explore_iters=DNN_EXPLORE_ITER,
                             noise_scale_begin=DNN_NOISE_SCALE_BEGIN,
                             noise_scale_end=DNN_NOISE_SCALE_END,
                             debug=DNN_DEBUG,
                             debug_interval=DNN_DEBUG_INTERVAL)
        if session.dnn_model is not None:
            model_nn.set_weights_bin(session.dnn_model)
        model_nn.fit(X_scaled, y_scaled, fit_epochs=DNN_TRAIN_ITER)
        res = model_nn.recommend(X_samples,
                                 X_min,
                                 X_max,
                                 explore=DNN_EXPLORE,
                                 recommend_epochs=MAX_ITER)
        session.dnn_model = model_nn.get_weights_bin()
        session.save()

    elif algorithm == AlgorithmType.GPR:
        # default gpr model
        if USE_GPFLOW:
            model_kwargs = {}
            model_kwargs['model_learning_rate'] = HP_LEARNING_RATE
            model_kwargs['model_maxiter'] = HP_MAX_ITER
            opt_kwargs = {}
            opt_kwargs['learning_rate'] = DEFAULT_LEARNING_RATE
            opt_kwargs['maxiter'] = MAX_ITER
            opt_kwargs['bounds'] = [X_min, X_max]
            ucb_beta = 'get_beta_td'
            opt_kwargs['ucb_beta'] = ucb.get_ucb_beta(ucb_beta,
                                                      scale=DEFAULT_UCB_SCALE,
                                                      t=i + 1.,
                                                      ndim=X_scaled.shape[1])
            tf.reset_default_graph()
            graph = tf.get_default_graph()
            gpflow.reset_default_session(graph=graph)
            m = gpr_models.create_model('BasicGP',
                                        X=X_scaled,
                                        y=y_scaled,
                                        **model_kwargs)
            res = tf_optimize(m.model, X_samples, **opt_kwargs)
        else:
            model = GPRGD(length_scale=DEFAULT_LENGTH_SCALE,
                          magnitude=DEFAULT_MAGNITUDE,
                          max_train_size=MAX_TRAIN_SIZE,
                          batch_size=BATCH_SIZE,
                          num_threads=NUM_THREADS,
                          learning_rate=DEFAULT_LEARNING_RATE,
                          epsilon=DEFAULT_EPSILON,
                          max_iter=MAX_ITER,
                          sigma_multiplier=DEFAULT_SIGMA_MULTIPLIER,
                          mu_multiplier=DEFAULT_MU_MULTIPLIER)
            model.fit(X_scaled, y_scaled, X_min, X_max, ridge=DEFAULT_RIDGE)
            res = model.predict(X_samples, constraint_helper=constraint_helper)

    best_config_idx = np.argmin(res.minl.ravel())
    best_config = res.minl_conf[best_config_idx, :]
    best_config = X_scaler.inverse_transform(best_config)
    # Decode one-hot encoding into categorical knobs
    best_config = dummy_encoder.inverse_transform(best_config)

    # Although we have max/min limits in the GPRGD training session, it may
    # lose some precisions. e.g. 0.99..99 >= 1.0 may be True on the scaled data,
    # when we inversely transform the scaled data, the different becomes much larger
    # and cannot be ignored. Here we check the range on the original data
    # directly, and make sure the recommended config lies within the range
    X_min_inv = X_scaler.inverse_transform(X_min)
    X_max_inv = X_scaler.inverse_transform(X_max)
    best_config = np.minimum(best_config, X_max_inv)
    best_config = np.maximum(best_config, X_min_inv)

    conf_map = {k: best_config[i] for i, k in enumerate(X_columnlabels)}
    conf_map_res = dict(status='good',
                        result_id=target_data['newest_result_id'],
                        recommendation=conf_map,
                        info='INFO: training data size is {}'.format(
                            X_scaled.shape[0]),
                        pipeline_run=latest_pipeline_run.pk)
    LOG.debug('%s: Finished selecting the next config.\n\ndata=%s\n',
              AlgorithmType.name(algorithm),
              JSONUtil.dumps(conf_map_res, pprint=True))

    return conf_map_res
Example #6
0
def configuration_recommendation(recommendation_input):
    target_data, algorithm = recommendation_input
    LOG.info('configuration_recommendation called')
    newest_result = Result.objects.get(pk=target_data['newest_result_id'])
    session = newest_result.session
    params = JSONUtil.loads(session.hyperparameters)

    if target_data['bad'] is True:
        target_data_res = create_and_save_recommendation(
            recommended_knobs=target_data['config_recommend'],
            result=newest_result,
            status='bad',
            info='WARNING: no training data, the config is generated randomly',
            pipeline_run=target_data['pipeline_run'])
        LOG.debug('%s: Skipping configuration recommendation.\n\ndata=%s\n',
                  AlgorithmType.name(algorithm),
                  JSONUtil.dumps(target_data, pprint=True))
        return target_data_res

    X_columnlabels, X_scaler, X_scaled, y_scaled, X_max, X_min,\
        dummy_encoder, constraint_helper = combine_workload(target_data)

    # FIXME: we should generate more samples and use a smarter sampling
    # technique
    num_samples = params['NUM_SAMPLES']
    X_samples = np.empty((num_samples, X_scaled.shape[1]))
    for i in range(X_scaled.shape[1]):
        X_samples[:, i] = np.random.rand(num_samples) * (X_max[i] -
                                                         X_min[i]) + X_min[i]

    q = queue.PriorityQueue()
    for x in range(0, y_scaled.shape[0]):
        q.put((y_scaled[x][0], x))

    i = 0
    while i < params['TOP_NUM_CONFIG']:
        try:
            item = q.get_nowait()
            # Tensorflow get broken if we use the training data points as
            # starting points for GPRGD. We add a small bias for the
            # starting points. GPR_EPS default value is 0.001
            # if the starting point is X_max, we minus a small bias to
            # make sure it is within the range.
            dist = sum(np.square(X_max - X_scaled[item[1]]))
            if dist < 0.001:
                X_samples = np.vstack(
                    (X_samples, X_scaled[item[1]] - abs(params['GPR_EPS'])))
            else:
                X_samples = np.vstack(
                    (X_samples, X_scaled[item[1]] + abs(params['GPR_EPS'])))
            i = i + 1
        except queue.Empty:
            break

    res = None

    if algorithm == AlgorithmType.DNN:
        # neural network model
        model_nn = NeuralNet(n_input=X_samples.shape[1],
                             batch_size=X_samples.shape[0],
                             explore_iters=params['DNN_EXPLORE_ITER'],
                             noise_scale_begin=params['DNN_NOISE_SCALE_BEGIN'],
                             noise_scale_end=params['DNN_NOISE_SCALE_END'],
                             debug=params['DNN_DEBUG'],
                             debug_interval=params['DNN_DEBUG_INTERVAL'])
        if session.dnn_model is not None:
            model_nn.set_weights_bin(session.dnn_model)
        model_nn.fit(X_scaled, y_scaled, fit_epochs=params['DNN_TRAIN_ITER'])
        res = model_nn.recommend(X_samples,
                                 X_min,
                                 X_max,
                                 explore=params['DNN_EXPLORE'],
                                 recommend_epochs=params['DNN_GD_ITER'])
        session.dnn_model = model_nn.get_weights_bin()
        session.save()

    elif algorithm == AlgorithmType.GPR:
        # default gpr model
        if params['GPR_USE_GPFLOW']:
            model_kwargs = {}
            model_kwargs['model_learning_rate'] = params[
                'GPR_HP_LEARNING_RATE']
            model_kwargs['model_maxiter'] = params['GPR_HP_MAX_ITER']
            opt_kwargs = {}
            opt_kwargs['learning_rate'] = params['GPR_LEARNING_RATE']
            opt_kwargs['maxiter'] = params['GPR_MAX_ITER']
            opt_kwargs['bounds'] = [X_min, X_max]
            opt_kwargs['debug'] = params['GPR_DEBUG']
            opt_kwargs['ucb_beta'] = ucb.get_ucb_beta(
                params['GPR_UCB_BETA'],
                scale=params['GPR_UCB_SCALE'],
                t=i + 1.,
                ndim=X_scaled.shape[1])
            tf.reset_default_graph()
            graph = tf.get_default_graph()
            gpflow.reset_default_session(graph=graph)
            m = gpr_models.create_model(params['GPR_MODEL_NAME'],
                                        X=X_scaled,
                                        y=y_scaled,
                                        **model_kwargs)
            res = tf_optimize(m.model, X_samples, **opt_kwargs)
        else:
            model = GPRGD(length_scale=params['GPR_LENGTH_SCALE'],
                          magnitude=params['GPR_MAGNITUDE'],
                          max_train_size=params['GPR_MAX_TRAIN_SIZE'],
                          batch_size=params['GPR_BATCH_SIZE'],
                          num_threads=params['TF_NUM_THREADS'],
                          learning_rate=params['GPR_LEARNING_RATE'],
                          epsilon=params['GPR_EPSILON'],
                          max_iter=params['GPR_MAX_ITER'],
                          sigma_multiplier=params['GPR_SIGMA_MULTIPLIER'],
                          mu_multiplier=params['GPR_MU_MULTIPLIER'],
                          ridge=params['GPR_RIDGE'])
            model.fit(X_scaled, y_scaled, X_min, X_max)
            res = model.predict(X_samples, constraint_helper=constraint_helper)

    best_config_idx = np.argmin(res.minl.ravel())
    best_config = res.minl_conf[best_config_idx, :]
    best_config = X_scaler.inverse_transform(best_config)

    if ENABLE_DUMMY_ENCODER:
        # Decode one-hot encoding into categorical knobs
        best_config = dummy_encoder.inverse_transform(best_config)

    # Although we have max/min limits in the GPRGD training session, it may
    # lose some precisions. e.g. 0.99..99 >= 1.0 may be True on the scaled data,
    # when we inversely transform the scaled data, the different becomes much larger
    # and cannot be ignored. Here we check the range on the original data
    # directly, and make sure the recommended config lies within the range
    X_min_inv = X_scaler.inverse_transform(X_min)
    X_max_inv = X_scaler.inverse_transform(X_max)
    best_config = np.minimum(best_config, X_max_inv)
    best_config = np.maximum(best_config, X_min_inv)

    conf_map = {k: best_config[i] for i, k in enumerate(X_columnlabels)}
    conf_map_res = create_and_save_recommendation(
        recommended_knobs=conf_map,
        result=newest_result,
        status='good',
        info='INFO: training data size is {}'.format(X_scaled.shape[0]),
        pipeline_run=target_data['pipeline_run'])
    LOG.debug('%s: Finished selecting the next config.\n\ndata=%s\n',
              AlgorithmType.name(algorithm),
              JSONUtil.dumps(conf_map_res, pprint=True))

    return conf_map_res
Example #7
0
def map_workload(map_workload_input):
    start_ts = time.time()
    target_data, algorithm = map_workload_input

    if target_data['bad']:
        assert target_data is not None
        target_data['pipeline_run'] = None
        LOG.debug('%s: Skipping workload mapping.\n\ndata=%s\n',
                  AlgorithmType.name(algorithm),
                  JSONUtil.dumps(target_data, pprint=True))

        return target_data, algorithm

    # Get the latest version of pipeline data that's been computed so far.
    latest_pipeline_run = PipelineRun.objects.get_latest()
    assert latest_pipeline_run is not None
    target_data['pipeline_run'] = latest_pipeline_run.pk

    newest_result = Result.objects.get(pk=target_data['newest_result_id'])
    session = newest_result.session
    params = JSONUtil.loads(session.hyperparameters)
    target_workload = newest_result.workload
    X_columnlabels = np.array(target_data['X_columnlabels'])
    y_columnlabels = np.array(target_data['y_columnlabels'])

    # Find all pipeline data belonging to the latest version with the same
    # DBMS and hardware as the target
    pipeline_data = PipelineData.objects.filter(
        pipeline_run=latest_pipeline_run,
        workload__dbms=target_workload.dbms,
        workload__hardware=target_workload.hardware,
        workload__project=target_workload.project)

    # FIXME (dva): we should also compute the global (i.e., overall) ranked_knobs
    # and pruned metrics but we just use those from the first workload for now
    initialized = False
    global_ranked_knobs = None
    global_pruned_metrics = None
    ranked_knob_idxs = None
    pruned_metric_idxs = None

    unique_workloads = pipeline_data.values_list('workload',
                                                 flat=True).distinct()

    workload_data = {}
    # Compute workload mapping data for each unique workload
    for unique_workload in unique_workloads:

        workload_obj = Workload.objects.get(pk=unique_workload)
        wkld_results = Result.objects.filter(workload=workload_obj)
        if wkld_results.exists() is False:
            # delete the workload
            workload_obj.delete()
            continue

        # Load knob & metric data for this workload
        knob_data = load_data_helper(pipeline_data, unique_workload,
                                     PipelineTaskType.KNOB_DATA)
        knob_data["data"], knob_data["columnlabels"] = clean_knob_data(
            knob_data["data"], knob_data["columnlabels"],
            newest_result.session)
        metric_data = load_data_helper(pipeline_data, unique_workload,
                                       PipelineTaskType.METRIC_DATA)
        X_matrix = np.array(knob_data["data"])
        y_matrix = np.array(metric_data["data"])
        rowlabels = np.array(knob_data["rowlabels"])
        assert np.array_equal(rowlabels, metric_data["rowlabels"])

        if not initialized:
            # For now set ranked knobs & pruned metrics to be those computed
            # for the first workload
            global_ranked_knobs = load_data_helper(
                pipeline_data, unique_workload, PipelineTaskType.RANKED_KNOBS
            )[:params['IMPORTANT_KNOB_NUMBER']]
            global_pruned_metrics = load_data_helper(
                pipeline_data, unique_workload,
                PipelineTaskType.PRUNED_METRICS)
            ranked_knob_idxs = [
                i for i in range(X_matrix.shape[1])
                if X_columnlabels[i] in global_ranked_knobs
            ]
            pruned_metric_idxs = [
                i for i in range(y_matrix.shape[1])
                if y_columnlabels[i] in global_pruned_metrics
            ]

            # Filter X & y columnlabels by top ranked_knobs & pruned_metrics
            X_columnlabels = X_columnlabels[ranked_knob_idxs]
            y_columnlabels = y_columnlabels[pruned_metric_idxs]
            initialized = True

        # Filter X & y matrices by top ranked_knobs & pruned_metrics
        X_matrix = X_matrix[:, ranked_knob_idxs]
        y_matrix = y_matrix[:, pruned_metric_idxs]

        # Combine duplicate rows (rows with same knob settings)
        X_matrix, y_matrix, rowlabels = DataUtil.combine_duplicate_rows(
            X_matrix, y_matrix, rowlabels)

        workload_data[unique_workload] = {
            'X_matrix': X_matrix,
            'y_matrix': y_matrix,
            'rowlabels': rowlabels,
        }

    if len(workload_data) == 0:
        # The background task that aggregates the data has not finished running yet
        target_data.update(mapped_workload=None, scores=None)
        LOG.debug(
            '%s: Skipping workload mapping because there is no parsed workload.\n',
            AlgorithmType.name(algorithm))
        return target_data, algorithm

    # Stack all X & y matrices for preprocessing
    Xs = np.vstack(
        [entry['X_matrix'] for entry in list(workload_data.values())])
    ys = np.vstack(
        [entry['y_matrix'] for entry in list(workload_data.values())])

    # Scale the X & y values, then compute the deciles for each column in y
    X_scaler = StandardScaler(copy=False)
    X_scaler.fit(Xs)
    y_scaler = StandardScaler(copy=False)
    y_scaler.fit_transform(ys)
    y_binner = Bin(bin_start=1, axis=0)
    y_binner.fit(ys)
    del Xs
    del ys

    # Filter the target's X & y data by the ranked knobs & pruned metrics.
    X_target = target_data['X_matrix'][:, ranked_knob_idxs]
    y_target = target_data['y_matrix'][:, pruned_metric_idxs]

    # Now standardize the target's data and bin it by the deciles we just
    # calculated
    X_target = X_scaler.transform(X_target)
    y_target = y_scaler.transform(y_target)
    y_target = y_binner.transform(y_target)

    scores = {}
    for workload_id, workload_entry in list(workload_data.items()):
        predictions = np.empty_like(y_target)
        X_workload = workload_entry['X_matrix']
        X_scaled = X_scaler.transform(X_workload)
        y_workload = workload_entry['y_matrix']
        y_scaled = y_scaler.transform(y_workload)
        for j, y_col in enumerate(y_scaled.T):
            # Using this workload's data, train a Gaussian process model
            # and then predict the performance of each metric for each of
            # the knob configurations attempted so far by the target.
            y_col = y_col.reshape(-1, 1)
            if params['GPR_USE_GPFLOW']:
                model_kwargs = {
                    'lengthscales': params['GPR_LENGTH_SCALE'],
                    'variance': params['GPR_MAGNITUDE'],
                    'noise_variance': params['GPR_RIDGE']
                }
                tf.reset_default_graph()
                graph = tf.get_default_graph()
                gpflow.reset_default_session(graph=graph)
                m = gpr_models.create_model(params['GPR_MODEL_NAME'],
                                            X=X_scaled,
                                            y=y_col,
                                            **model_kwargs)
                gpr_result = gpflow_predict(m.model, X_target)
            else:
                model = GPRNP(length_scale=params['GPR_LENGTH_SCALE'],
                              magnitude=params['GPR_MAGNITUDE'],
                              max_train_size=params['GPR_MAX_TRAIN_SIZE'],
                              batch_size=params['GPR_BATCH_SIZE'])
                model.fit(X_scaled, y_col, ridge=params['GPR_RIDGE'])
                gpr_result = model.predict(X_target)
            predictions[:, j] = gpr_result.ypreds.ravel()
        # Bin each of the predicted metric columns by deciles and then
        # compute the score (i.e., distance) between the target workload
        # and each of the known workloads
        predictions = y_binner.transform(predictions)
        dists = np.sqrt(
            np.sum(np.square(np.subtract(predictions, y_target)), axis=1))
        scores[workload_id] = np.mean(dists)

    # Find the best (minimum) score
    best_score = np.inf
    best_workload_id = None
    best_workload_name = None
    scores_info = {}
    for workload_id, similarity_score in list(scores.items()):
        workload_name = Workload.objects.get(pk=workload_id).name
        if similarity_score < best_score:
            best_score = similarity_score
            best_workload_id = workload_id
            best_workload_name = workload_name
        scores_info[workload_id] = (workload_name, similarity_score)
    target_data.update(mapped_workload=(best_workload_id, best_workload_name,
                                        best_score),
                       scores=scores_info)
    LOG.debug('%s: Finished mapping the workload.\n\ndata=%s\n',
              AlgorithmType.name(algorithm),
              JSONUtil.dumps(target_data, pprint=True))

    save_execution_time(start_ts, "map_workload", newest_result)
    return target_data, algorithm