Example #1
0
    def get_sentiment(self, cumulative=False):
        '''
        Calculates the sentiment of the cluster. It returns 
        a list of tuples (date, value) where date value is the accumulated sentiment
        of that date.
        '''
        emotional_rollercoaster = []
        tsa = TwitterSemanticAnalyser()
        for document in self.document_dict.values():
            sentiment = tsa.extract_sentiment(' '.join(token for token in document.tokens))
            emotional_rollercoaster.append( (document.date, sentiment) )

        #It's important to sort this list otherwise itertools will npt work.
        #The we group emotion scores by date. t[1][1] is the score of a document at time d.
        x = sorted(emotional_rollercoaster)
        grouped_emotions = [(d, sum([float(t[1][1]) for t in g])) for d, g in itertools.groupby(x, lambda x: x[0])]
        return grouped_emotions
    def get_sentiment(self, cumulative=False):
        '''
        Calculates the sentiment of the cluster. It returns 
        a list of tuples (date, value) where date value is the accumulated sentiment
        of that date.
        '''
        emotional_rollercoaster = []
        tsa = TwitterSemanticAnalyser()
        for document in self.document_dict.values():
            sentiment = tsa.extract_sentiment(' '.join(token for token in document.tokens))
            emotional_rollercoaster.append( (document.date, sentiment) )

        #It's important to sort this list otherwise itertools will npt work.
        #The we group emotion scores by date. t[1][1] is the score of a document at time d.
        x = sorted(emotional_rollercoaster)
        grouped_emotions = [(d, sum([float(t[1][1]) for t in g])) for d, g in itertools.groupby(x, lambda x: x[0])]
        return grouped_emotions
 def test_analysing_multiple_docs(self):
     tsa = TwitterSemanticAnalyser()
     calculated = tsa.analyse_corpus(corpus)
     expected = [([], ('positive', '0.0593345'), [
         'Gheblawi Beyond belief', 'Egypt interesting discussion',
         'religious history', 'make-up', 'interesting'
     ]), ([], ('negative', '-0.31492'), ['Messi', 'News']),
                 ([('retweet', 'FieldTerminology')], ('neutral', 0), []),
                 ([], ('positive', '0.060677'), [
                     'RT Beyond belief', 'Egypt interesting discussion',
                     'religious history', 'make-up', 'interesting'
                 ]),
                 ([('Bob Jones', 'Person'), ('Bob', 'Person'),
                   ('Egypt', 'Country')], ('neutral', 0),
                  ['Bob Jones', 'Egypt']),
                 ([], ('negative', '-0.200008'), []),
                 ([], ('positive', '0.61373'), ['happy'])]
     self.assertEquals(expected, calculated)
 def test_extract_keywords(self):
     tsa = TwitterSemanticAnalyser()
     calculated = tsa.extract_keywords(tweet5)
     expected = ['Bob Jones', 'Egypt']
     self.assertEqual(expected, calculated)
 def test_sentiment_extraction(self):
     tsa = TwitterSemanticAnalyser()
     calculated_sad = tsa.extract_sentiment(tweet6)
     calculated_happy = tsa.extract_sentiment(tweet7)
     self.assertEqual(('negative', '-0.200008'), calculated_sad)
     self.assertEqual(('positive', '0.61373'), calculated_happy)
 def test_entity_extraction(self):
     tsa = TwitterSemanticAnalyser()
     calculated = tsa.extract_entities(tweet5)
     expected = [('Bob Jones', 'Person'), ('Bob', 'Person'),
                 ('Egypt', 'Country')]
     self.assertEqual(expected, calculated)
 def test_analysing_multiple_docs(self):
     tsa = TwitterSemanticAnalyser()
     calculated = tsa.analyse_corpus(corpus)
     expected = [([], ('positive', '0.0593345'), ['Gheblawi Beyond belief', 'Egypt interesting discussion', 'religious history', 'make-up', 'interesting']), ([], ('negative', '-0.31492'), ['Messi', 'News']), ([('retweet', 'FieldTerminology')], ('neutral', 0), []), ([], ('positive', '0.060677'), ['RT Beyond belief', 'Egypt interesting discussion', 'religious history', 'make-up', 'interesting']), ([('Bob Jones', 'Person'), ('Bob', 'Person'), ('Egypt', 'Country')], ('neutral', 0), ['Bob Jones', 'Egypt']), ([], ('negative', '-0.200008'), []), ([], ('positive', '0.61373'), ['happy'])]
     self.assertEquals(expected, calculated)
 def test_extract_keywords(self):
     tsa = TwitterSemanticAnalyser()
     calculated = tsa.extract_keywords(tweet5)
     expected = ['Bob Jones', 'Egypt']
     self.assertEqual(expected, calculated) 
 def test_sentiment_extraction(self):
     tsa = TwitterSemanticAnalyser()
     calculated_sad = tsa.extract_sentiment(tweet6)
     calculated_happy = tsa.extract_sentiment(tweet7)
     self.assertEqual(('negative', '-0.200008'), calculated_sad)
     self.assertEqual(('positive', '0.61373'), calculated_happy)
 def test_entity_extraction(self):
     tsa = TwitterSemanticAnalyser()
     calculated = tsa.extract_entities(tweet5)
     expected = [('Bob Jones', 'Person'), ('Bob', 'Person'), ('Egypt', 'Country')]
     self.assertEqual(expected, calculated)