Example #1
0
    def vote(self, code, day):
        features = []
        values = db_helper.select(query_kdj_fn, (code, day, 30))
        if len(values) < 30:
            return features
        values = np.array(values)[::-1]
        k_values = values[:, 1].astype(float)
        d_values = values[:, 2].astype(float)
        j_values = values[:, 3].astype(float)

        if k_values[-1] <= 20 and d_values[-1] <= 20 and j_values[-1] <= 20:
            features.append(self.OVER_SOLD)

        if ins.match(k_values[-3:], d_values[-3:]) == 1 and ins.match(
                j_values[-3:], d_values[-3:]):
            features.append(self.GOOD_CROSS)

        s = 0
        if trend.is_uptrend(k_values[-10:]):
            s = s + 1
        if trend.is_uptrend(d_values[-10:]):
            s = s + 1
        if trend.is_uptrend(j_values[-10:]):
            s = s + 1
        if s >= 2:
            k_values = db_helper.select(query_k_fn, (code, day, 10))
            k_values = np.array(k_values)[::-1]
            close_values = k_values[:, 0].astype(float)
            if trend.is_downtrend(close_values):
                features.append(self.BOTTOM_DEVIATION)
        return features
Example #2
0
    def vote(self, code, day):
        features = []
        values = db_helper.select(query_kpi_fn, (code, day, 30))
        if len(values) < 30:
            return features
        values = np.array(values)[::-1]
        rsi_6_lines = values[:, 1].astype(float)
        rsi_12_lines = values[:, 2].astype(float)
        rsi_24_lines = values[:, 3].astype(float)

        if rsi_6_lines[-1] <= 20:
            features.append(self.OVER_SOLD)

        if rsi_6_lines[-1] < 50 and rsi_12_lines[-1] < 50 and rsi_24_lines[
                -1] < 50:
            if ins.match(rsi_6_lines[-3:],
                         rsi_12_lines[-3:]) == 1 and ins.match(
                             rsi_6_lines[-3:], rsi_24_lines[-3:]):
                features.append(self.GOOD_CROSS)

        if trend.is_uptrend(rsi_6_lines[-10:]):
            k_values = db_helper.select(query_k_fn, (code, day, 10))
            if len(k_values) == 10:
                k_values = np.array(k_values)[::-1]
                close_values = k_values[:, 0].astype(float)
                if trend.is_downtrend(close_values):
                    features.append(self.BOTTOM_DEVIATION)

        return features
Example #3
0
    def vote(self, code, day):
        features = []
        arbr_values = db_helper.select(query_arbr_fn, (code, day, 14))
        if len(arbr_values) < 14:
            return features
        arbr_values = np.array(arbr_values)[::-1]
        ar_values = arbr_values[:, 1].astype(float)
        br_values = arbr_values[:, 2].astype(float)
        if ins.match(br_values[-3:], ar_values[-3:]) == 1:
            features.append(self.GOOD_CROSS)

        if trend.is_uptrend(ar_values) and trend.is_uptrend(br_values):
            k_values = db_helper.select(query_k_fn, (code, day, 14))
            if len(k_values) == 14:
                k_values = np.array(k_values)[::-1]
                close_values = k_values[:, 0].astype(float)
                if trend.is_downtrend(close_values):
                    features.append(self.BOTTOM_DEVIATION)

        return features
Example #4
0
def positive(data):
    size = len(data)
    if size < 4:
        print('数据必须多余4个')
        return False
    min_idx = 0
    min_v = np.max(data)
    for i in range(size):
        if data[i] <= min_v:
            min_idx = i
            min_v = data[i]
    if min_idx == 0:
        return False, 0
    if min_idx == size - 1:
        return False, size - 1
    left_data = data[0:min_idx + 1]
    right_data = data[min_idx:]
    return trend.is_downtrend(left_data) and trend.is_uptrend(
        right_data), min_idx
Example #5
0
    def vote(self, code, day):
        features = []
        values = db_helper.select(query_wr_fn, (code, day, 30))
        if len(values) < 30:
            return features
        values = np.array(values)[::-1]
        wr_6_values = values[:, 1].astype(float)

        if trend.is_uptrend(wr_6_values[-10:]):
            k_values = db_helper.select(query_k_fn, (code, day, 10))
            if len(k_values) == 10:
                k_values = np.array(k_values)[::-1]
                close_values = k_values[:, 0].astype(float)
                if trend.is_downtrend(close_values):
                    features.append(self.BOTTOM_DEVIATION)

        if wr_6_values[-1] > 80:
            features.append(self.OVER_SOLD)
        return features
Example #6
0
    def vote(self, code, day):
        features = []
        values = db_helper.select(self.query_kpi_fn, (code, day, 30, EMV))
        if len(values) < 30:
            return features
        values = np.array(values)[::-1]
        emv_values = np.array(list(map(lambda x: np.float(x.emv), values)))
        if trend.is_uptrend(emv_values[-10:]):
            k_values = db_helper.select(self.query_kpi_fn,
                                        (code, day, 10, TradingDataDaily))
            if len(k_values) == 10:
                k_values = np.array(k_values)[::-1]
                close_values = np.array(
                    list(map(lambda x: np.float(x.close), k_values)))
                if trend.is_downtrend(close_values):
                    features.append(self.BOTTOM_DEVIATION)

        bt, l = zero_line.breakthrough(emv_values[-10:])
        if bt and l <= 3:
            features.append(self.BREAK_ZERO)

        return features
Example #7
0
 def vote(self, code, day):
     features = []
     values = db_helper.select(query_roc_fn, (code, day, 30))
     if len(values) < 30:
         return features
     values = np.array(values)[::-1]
     roc_values = values[:, 1].astype(float)
     rocma_values = values[:, 2].astype(float)
     if ins.match(roc_values[-3:], rocma_values[-3:]) == 1:
         features.append(self.GOOD_CROSS)
     
     if trend.is_uptrend(roc_values):
         k_values = db_helper.select(query_k_fn, (code, day, 30))
         if len(k_values) == 30:
             k_values = np.array(k_values)[::-1]
             close_values = k_values[:, 0].astype(float)
             if trend.is_downtrend(close_values):
                 features.append(self.BOTTOM_DEVIATION)
     
     bt, l = zero_line.breakthrough(roc_values, 0)
     if bt and l <= 3:
         features.append(self.BREAK_ZERO)
     return features
Example #8
0
    def vote(self, code, day):
        features = []
        values = db_helper.select(query_kpi_fn, (code, day, 30))
        if len(values) < 30:
            return features
        values = np.array(values)[::-1]
        b6_lines = values[:, 1].astype(float)
        b12_lines = values[:, 1].astype(float)
        b24_lines = values[:, 1].astype(float)

        if b6_lines[-1] <= -4 and b12_lines[-1] <= -5.5 and b24_lines[-1] <= -8:
            features.append(self.OVER_SOLD)

        if ins.match(b6_lines[-3:], b12_lines[-3:]) == 1 and ins.match(
                b6_lines[-3:], b24_lines[-3:]):
            features.append(self.GOOD_CROSS)

        if trend.is_uptrend(b6_lines[-10:]):
            k_values = db_helper.select(query_k_fn, (code, day, 10))
            k_values = np.array(k_values)[::-1]
            close_values = k_values[:, 0].astype(float)
            if trend.is_downtrend(close_values):
                features.append(self.BOTTOM_DEVIATION)
        return features