Example #1
0
                    for paradigm, scores in split_paradigm_score(
                            df, args.folder, path, category):
                        statistics = fault_statistics(scores, statistics,
                                                      category,
                                                      name + paradigm)
                else:
                    statistics = fault_statistics(df, statistics, category,
                                                  name)
        if not statistics.empty:
            save_dataframe(statistics, folder, category, False)


def fault_statistics(df, statistics, category, name):
    print(f'[{category}] Fault-statistics: {name}')
    total_rows = len(df)
    faulty_rows = len(df[df['faults'] > 0])
    non_faulty_rows = len(df[df['faults'] == 0])
    percentage_faulty = (faulty_rows / total_rows) * 100
    result = {
        'name': name,
        'rows': total_rows,
        'faulty_rows': faulty_rows,
        'non_faulty_rows': non_faulty_rows,
        'percentage_faulty': percentage_faulty
    }
    return statistics.append(result, ignore_index=True)


if __name__ == '__main__':
    main(parse_args())
Example #2
0
from analysis import descriptive, fault_statistics, univariate, multivariate, parse_args, multivariate_baseline, \
    multivariate_baseline_hasdata, multivariate_baseline_control, fault_metric_statistics

if __name__ == '__main__':
    args = parse_args()
    descriptive.main(args)
    fault_statistics.main(args)
    fault_metric_statistics.main(args)
    univariate.main(args)
    multivariate.main(args)
    if args.multivariate_baseline:
        multivariate_baseline.main(args)
        multivariate_baseline_hasdata.main(args)
    if args.multivariate_baseline_control:
        multivariate_baseline_control.main(args)