import pandas as pd sns.set(context = "talk", style = "ticks", rc = {"lines.linewidth": 4}) import matplotlib.ticker as ticker import matplotlib.pyplot as plt # ============================================================================= # run experiment to get normalization conditions # ============================================================================= time = np.arange(0,100,0.01) # ============================================================================= # heatmap conditions # ============================================================================= res = 30 arr_myc = arr_from_d(d, "r_myc", res = res) arr_il2 = arr_from_d(d, "r_il2", res = res) name1 = "r_myc" name2 = "r_il2" model = timer_il2_model # ============================================================================= # resp size heatmaps # ============================================================================= readout_fun_list = [get_area, get_peak, get_peaktime] norm_list = [40., 15, 3.4] heatmap_list = [] for readout_fun, norm in zip(readout_fun_list, norm_list):
import matplotlib.ticker as ticker import matplotlib.pyplot as plt import itertools # ============================================================================= # run experiment to get normalization conditions # ============================================================================= time = np.arange(0, 200, 0.01) # ============================================================================= # heatmap conditions # ============================================================================= pnames = ["n_div", "r_diff", "gamma"] pnames2 = ["r_il2", "r_myc", "r_C"] arr_spec = [arr_from_d(d, name, res=20) for name in pnames2] res = len(arr_spec[0]) arr_com = np.logspace(-1, 1, res) model_list = [il2_model, timer_model, C_model] # ============================================================================= # resp size heatmaps # ============================================================================= titles = ["resp. size IL2", "resp. size Timer", "resp. size K"] readout_fun = get_area norm_area = 40 vmin = -3 vmax = 3 color = "bwr"
from analysis_module import multi_param, arr_from_d from ode_models import il2_model, timer_model, null_model, C_model import pandas as pd sns.set(context="talk", style="ticks", rc={"lines.linewidth": 4}) import matplotlib.ticker as ticker # ============================================================================= # define exp conditions # ============================================================================= model_list = [il2_model, timer_model, C_model] model_names = ["IL2", "Timer", "K"] time = np.arange(0, 100, 0.001) pnames = ["r_il2", "r_myc", "r_C"] pnames_arr = [arr_from_d(d, pname) for pname in pnames] # ============================================================================= # param scan # ============================================================================= df_new = multi_param(pnames, pnames_arr, d, time, model_list, model_names) df1 = df_new[(df_new["pname"] == "r_il2") & (df_new["model"] == "IL2")] df2 = df_new[(df_new["pname"] == "r_C") & (df_new["model"] == "K")] df3 = df_new[(df_new["pname"] == "r_myc") & (df_new["model"] == "Timer")] df = pd.concat([df1, df2, df3]) g = sns.relplot(x="sim", y="ylog", kind="line",
# ============================================================================= # define exp conditions # ============================================================================= model_list2 = [[il2_model], [C_model], [timer_model]] model_names2 = [["il2"], ["K"], ["timer"]] pnames = ["r_il2", "r_C", "r_myc"] time = np.arange(0, 1000, 0.001) df_list = [] for model_list, model_names, pname in zip(model_list2, model_names2, pnames): arr = arr_from_d(d, pname) df_new = vary_param(arr, pname, d, time, model_list, model_names) df_list.append(df_new) df = pd.concat(df_list) # ============================================================================= # plotting # ============================================================================= loc_major = ticker.LogLocator(base=10.0, numticks=100) loc_minor = ticker.LogLocator(base=10.0, subs=np.arange(0.1, 1, 0.1), numticks=12) g = sns.relplot(data=df,
from analysis_module import multi_param, param_norm, arr_from_d, update_dict, vary_param from ode_models import il2_model, timer_model, null_model, C_model sns.set(context="talk", style="ticks", rc={"lines.linewidth": 4}) import matplotlib.ticker as ticker import matplotlib.pyplot as plt import pandas as pd # ============================================================================= # normalize for gamma # ============================================================================= time = np.arange(0, 200, 0.001) arr_model_name = "r_myc" arr_timer = arr_from_d(d, arr_model_name) pname = "gamma" guess_range = (0.1, 4) norm = 40. model = timer_model arr_gamma_timer = param_norm(arr_timer, arr_model_name, pname, guess_range, time, d, model, norm) # ============================================================================= # normalize for C model # ============================================================================= time = np.arange(0, 500, 0.001)