Example #1
0
def r0_altern(mu, s, kp, km, vr, vt, tr):
    """Alternative expression for the stationary firing rate"""
    #return ( 1./(tr + (kp+km) * integrate(lambda x: integrate(lambda y: abs(mu-y+s)**kp/abs(mu-x+s)**(kp+1) * abs(mu-y-s)**(km-1)/abs(mu-x-s)**km, x, mu-s), vr, vt)
    return (1. / (tr + (kp + km) * integrate(
        lambda x: integrate(
            lambda y: abs((mu - y + s) / (mu - x + s))**(kp) * abs(
                (mu - y - s) / (mu - x - s))**(km) * 1. / (mu - x + s) * 1. /
            (mu - y - s), x, mu - s), vr, vt) + (1 - exp(-tr * (kp + km))) /
                  (kp + km) * (-1 + (kp + km) * integrate(
                      lambda x: abs((mu - x + s) / (mu - vr + s))**kp * abs(
                          (mu - x - s) / (mu - vr - s))**km * 1. /
                      (mu - x - s), vr, mu - s))))
Example #2
0
def P0(model, v, mu, s, kp, km, vr, vt, tr):
    """Return the stationary density. v may not be an array!"""
    phi = lambda v: model.phi(v, mu, s, kp, km)
    f = lambda v: model.f(v, mu)
    fp = lambda v: model.fp(v, mu)
    ekt = exp(-(kp+km)*tr)
    ints = model.intervals(mu, s, vr, vt)
    if v < ints[0][0] or v > ints[-1][1]:
        return 0.

    r0 = 1./if_dicho_T1(model, mu, s, kp, km, vr, vt, tr)
    al = if_dicho_alpha(model, mu, s, kp, km, vr, vt, tr)

    Gd = (2*al-1)*ekt + (km-kp)/(kp+km) * (1.-ekt)

    # which interval are we in
    if v <= ints[0][0]:
        return 0.
    l, r, c = (None, None, None)
    for l, r, c in ints:
        if l < v < r:
            break

    return r0/(f(v)**2-s**2) * (
            # (heav(c-vr)-heav(v-vr)) * (s*Gd-f(vr))*exp(phi(vr)-phi(v))
            #-(heav(c-vt)-heav(v-vt)) * (s*(2*al-1)-f(vt))*exp(phi(vt)-phi(v))
              ((1.if c>vr else 0.)-heav(v-vr)) * (s*Gd-f(vr))*exp(phi(vr)-phi(v))
             -((1.if c>=vt else 0.)-heav(v-vt)) * (s*(2*al-1)-f(vt))*exp(phi(vt)-phi(v))
            + integrate(lambda x: exp(phi(x)-phi(v))*(heav(x-vr)-heav(x-vt))*(fp(x)+kp+km), c, v))
Example #3
0
def T1(model, mu, s, kp, km, vr, vt, tr):
    """Return the mean first passage time"""
    phi = lambda v: model.phi(v, mu, s, kp, km)
    f = lambda v: model.f(v, mu)
    ekt = exp(-(kp+km)*tr)
    
    def plusint(l, r):
        return integrate(lambda x: exp(phi(x)-phi(r))/(f(x)+s), l, r)

    def minusint(l, r):
        return integrate(lambda x: exp(-phi(x)+phi(l))/(f(x)-s), l, r)

    al = if_dicho_alpha(locals())

    res = 0.
    ints = model.intervals(mu, s, vr, vt)
    for i in ints:
        l, r, c = i
        cbar = l if c == r else r
        res += (kp+km) * integrate(lambda x: heav(x-vr)/(f(x)+s) * minusint(x, cbar), l, r)

    ln, rn, cn = ints[-1]
    l0, r0, c0 = ints[0]
    c0bar = l0 if c0 == r0 else r0
   
    return res + tr + plusint(cn, vt) + ((1-al)/kp*ekt+1./(kp+km)*(1-ekt)) * (exp(phi(vr)-phi(c0bar))-1.+(kp+km) * minusint(vr, c0bar))
Example #4
0
    def phi(self, v, mu, rin_e, a_e):
        d = self.d
        vtb = self.vtb
        ufp = (mu-d*lambertw(-exp((mu-vtb)/d),-1)).real
        sfp = (mu-d*lambertw(-exp((mu-vtb)/d),0)).real

        # extreme cases
        #if v > 

        if (lambertw(-exp((mu-vtb)/d),0).imag > 0) or (lambertw(-exp((mu-vtb)/d),-1).imag > 0):
            c = 25
        elif v > ufp:
            c = 25
        elif v < sfp:
            c = -25
        else: 
            c = (ufp + sfp)/2
        # have I done an integral with that c already? we assume that it's v was close, reusing that sub-integral makes things somewhat faster 
        k = (c, mu, rin_e, a_e)
        i0 = 0
        if self.intcache.has_key(k):
            c, i0 = self.intcache[k]
            
        i1 = integrate(lambda x: 1./self.f(x, mu), c, v) + i0
        self.intcache[k] = (v, i1)

        return v/a_e + rin_e * i1
Example #5
0
def r0(mu, rin_e, a_e, vr, vt, tr): 
    """Return the stationary firing rate of an LIF driven by excitatory shot noise. 
    Adapted from the expression derived in 
    Richardson, M. J. & Swarbrick, R. Phys. Rev. Lett., APS, 2010, 105, 178102"""

    T = tr+float(integrate(lambda c: 1./c*(1-a_e*c)**rin_e * (exp(c*(vt-mu))/(1-a_e*c)-exp(c*(vr-mu))), 0, 1./a_e).real)
    return 1./T
Example #6
0
def if_dicho_alpha(model, mu, s, kp, km, vr, vt, tr):
    """Return the fraction of trajectories crossing the threshold in the + state"""
    phi = lambda v: model.phi(v, mu, s, kp, km)
    f = lambda v: model.f(v, mu)
    ekt = exp(-(kp+km)*tr)
    
    if f(vt)-s < 0:
        return 1.
    else:
        ln, rn, cn = model.intervals(mu, s, vr, vt)[-1]
        return 1.- (heav(vr-cn) * kp/(kp+km) * exp(phi(vr)) * (1.-ekt) + kp * integrate(lambda x: exp(phi(x))*heav(x-vr)/(f(x)+s), cn, vt)) / (exp(phi(vt))-heav(vr-cn)*ekt*exp(phi(vr)))
Example #7
0
 def minusint(l, r):
     return integrate(lambda x: exp(-phi(x)+phi(l))/(f(x)-s), l, r)
Example #8
0
 def plusint(l, r):
     return integrate(lambda x: exp(phi(x)-phi(r))/(f(x)+s), l, r)
Example #9
0
def T1(mu, D, tr):
    """Return the first moment of the ISI density.
    This single-integral form is due to Brunel & Latham, Neural Comp. 2003
    It assumes vr, vt -> +- infty"""
    return sqrt(pi) * integrate(lambda z: exp(-mu * z**2 - D**2/12 * z**6), -inf, inf) + tr