def test_model(gm): full_csv_path = os.path.join(ARTIFACT_DIR, TEST_INFO_FILE) result = [] with closing(open(full_csv_path, 'r')) as csvfile: dr = DictReader(csvfile) for row in dr: full_sample_path = os.path.join(ARTIFACT_DIR, row['filename']) feat = analyze.extract_features_file(full_sample_path) score = gm.score(feat) is_ok = row['is_ok'] == '1' result.append(TestResult(row['filename'], score, is_ok)) return result
def generate_features(): full_csv_path = os.path.join(ARTIFACT_DIR, TRAINING_INFO_FILE) feat_stacked = None with closing(open(full_csv_path, 'r')) as csvfile: dr = DictReader(csvfile) for row in dr: sample_path = os.path.join(ARTIFACT_DIR, row['filename']) feat = analyze.extract_features_file(sample_path) if feat_stacked is None: feat_stacked = feat else: feat_stacked = np.vstack((feat_stacked, feat)) return feat_stacked
def create_features_data(filename): feat_finale = None labels_finale = None with closing(open(filename, 'r')) as csvfile: dr = DictReader(csvfile) for row in dr: feat = analyze.extract_features_file(row['filename']) labels = np.ones((feat.shape[0], 1)) * float(row['is_ok']) if feat_finale is None: feat_finale = feat else: feat_finale = np.vstack((feat_finale, feat)) if labels_finale is None: labels_finale = labels else: labels_finale = np.vstack((labels_finale, labels)) return feat_finale, labels_finale
def determine_from_sample(filename, clsfr): feat = analyze.extract_features_file(filename) return determine(clsfr, feat)
def sample_test(gm, sample_filename): feat = analyze.extract_features_file(sample_filename) return gm.score(feat)