Example #1
0
def test_timoshenko_discrete():
    system = SystemElements()
    system.add_element(location=[[0.25, 0]],
                       EA=1.4e8,
                       EI=1.167e5,
                       GA=0.8333 * 8.75e6)
    system.add_element(location=[[0.5, 0]],
                       EA=1.4e8,
                       EI=1.167e5,
                       GA=0.8333 * 8.75e6)
    system.add_element(location=[[0.75, 0]],
                       EA=1.4e8,
                       EI=1.167e5,
                       GA=0.8333 * 8.75e6)
    system.add_element(location=[[1, 0]],
                       EA=1.4e8,
                       EI=1.167e5,
                       GA=0.8333 * 8.75e6)
    system.q_load(element_id=1, q=5000, direction="y")
    system.q_load(element_id=2, q=5000, direction="y")
    system.q_load(element_id=3, q=5000, direction="y")
    system.q_load(element_id=4, q=5000, direction="y")

    system.add_support_hinged(node_id=1)
    system.add_support_roll(node_id=5)

    system.solve()

    assert np.isclose(abs(system.system_displacement_vector[7]),
                      6.44e-4,
                      rtol=1e-2)
Example #2
0
def results():
    # add section data and loads of the dialog
    E = float(ui.editE.text())
    I = float(ui.editI.text())
    A = float(ui.editA.text())
    ss = SystemElements()
    frame = FreeCAD.ActiveDocument.getObjectsByLabel(
        ui.comboBox.currentText())[0]
    sk = frame.Base
    for l in sk.Geometry:
        sp = [i * 1e-3 for i in list(l.StartPoint)[:2]]
        ep = [i * 1e-3 for i in list(l.EndPoint)[:2]]
        ss.add_element([sp, ep], EA=E * A, EI=E * I)
    for i in list(range(len(sk.Geometry))):
        if ui.table.item(i, 1):
            item = ui.table.item(i, 1)
            try:
                load = float(item.text())
                ss.q_load(element_id=(i + 1), q=load)
            except:
                pass
    for i in list(range(ss.id_last_node)):
        if ui.table_2.item(i, 1):
            if ui.table_2.item(i, 1).text() == 'fix':
                ss.add_support_fixed(node_id=i + 1)
            elif ui.table_2.item(i, 1).text() == 'hinge':
                ss.add_support_hinged(node_id=i + 1)
            elif ui.table_2.item(i, 1).text() == 'roll':
                ss.add_support_roll(node_id=i + 1)
    ss.solve()
    ss.show_results()
Example #3
0
def test_parallel_q_load():
    system = SystemElements()
    system.add_element(location=[[0, 0], [1, 0]], EA=5e9, EI=8000)
    system.q_load(element_id=1, q=-10, direction="x")
    system.add_support_hinged(node_id=1)
    system.add_support_roll(node_id=2)

    system.solve()

    assert system.element_map[1].N_1 == -10
    assert system.element_map[1].N_2 == 0
Example #4
0
def test_linear_parallel_q_load():
    system = SystemElements()
    system.add_element(location=[[0, 0], [1, 0]], EA=5e2, EI=800)
    system.add_element(location=[[1, 0], [2, 0]], EA=5e2, EI=800)
    system.q_load(element_id=1, q=10, q2=20, direction="x")
    system.add_support_hinged(node_id=1)
    system.add_support_roll(node_id=3)

    system.solve()

    assert np.isclose(system.reaction_forces[1].Fx, -15)
    assert np.isclose(np.max(system.system_displacement_vector), 0.01666667)
Example #5
0
def test_bernoulli():
    system = SystemElements()
    system.add_element(location=[[0, 0], [1, 0]], EA=1.4e8, EI=1.167e5)
    system.q_load(element_id=1, q=5000, direction="y")

    system.add_support_hinged(node_id=1)
    system.add_support_roll(node_id=2)

    system.solve()

    assert np.isclose(np.max(abs(system.element_map[1].deflection)),
                      5.58e-4,
                      rtol=1e-2)
Example #6
0
def build_struct(nodes):
    ss = SystemElements()
    for i in range(len(nodes) - 1):
        ss.add_element(location=[nodes[i], nodes[i + 1]])

    ss.add_support_fixed(node_id=1)
    if nodes.count(end_xy) > 0:
        print("End point reached")
        ss.add_support_fixed(node_id=nodes.index(end_xy) + 1)

    ss.q_load(element_id=1, q=-1)
    ss.solve()
    ss.show_structure()
    ss.show_displacement()
Example #7
0
def test_linear_q_load():
    system = SystemElements()
    system.add_element(location=[[0, 0], [1, 0]], EA=5e8, EI=800)
    system.add_element(location=[[1, 0], [2, 0]], EA=5e8, EI=800)
    system.q_load(element_id=1, q=-10, q2=-20, direction="y")
    system.add_support_hinged(node_id=1)
    system.add_support_roll(node_id=3)

    system.solve()

    assert np.isclose(np.max(abs(system.element_map[1].shear_force)), 10.87, rtol=1e-2)
    assert np.isclose(np.max(abs(system.element_map[2].shear_force)), 4.17, rtol=1e-2)
    assert np.isclose(np.max(abs(system.element_map[1].bending_moment)), 4.62, rtol=1e-2)
    assert np.isclose(np.max(abs(system.system_displacement_vector)), 3.7673e-3, rtol=1e-2)
Example #8
0
def Beam_objective_funciton_BD(depths):
    #def fn(*args):
    #beam1 = Beam(depth,breadth,Asc,Ast,15,415,415,3.14*10**2/4,spacing);
    #beam1.moment_capcity()
    #beam1.min_spacing()
    #beam1.max_spacing()
    FS = SystemElements()

    # Add beams to the system.
    FS.add_element(location=[0, 5], EA=15000, EI=5000)
    FS.add_element(location=[[0, 5], [5, 5]], EA=15000, EI=5000)
    FS.add_element(location=[[5, 5], [5, 0]], EA=15000, EI=5000)

    # Add a fixed support at node 1.
    FS.add_support_fixed(node_id=1)

    # Add a rotational spring support at node 4.
    FS.add_support_spring(node_id=4, translation=3, k=4000)

    # Add loads.
    FS.point_load(Fx=30, node_id=2)
    FS.q_load(q=-10, element_id=2)
    FS.q_load(q=-10, element_id=1)
    #ss.q_load(q=-10, element_id=4)
    #print(ss.node_ranges())

    # Solve
    FS.solve()
    FS.get_element_results(element_id=1)['length']
    FS.get_element_results(element_id=1)['Mmin']
    deno = FS.get_element_results(element_id=1)['Mmax']

    #breadth = randgen(300,600)
    #Asc = 0
    #Ast = 0
    #spacing = 150
    #beam = Beam(depth,breadth,Asc,Ast,15,415,415,3.14*10**2/4,spacing)
    #Asc = beam.p_min()
    #Ast = beam.p_min()
    #beam1 = Beam(depth,breadth,Asc,Ast,15,415,415,3.14*10**2/4,spacing)
    #beam1.moment_capcity()
    #beam1.min_spacing()
    #beam1.max_spacing()

    #print(beam1.moment_capcity()*10**(-3))
    #print(FS.get_element_results(element_id=1)['Mmax'])
    res, depth_f = Beam_gene(depths, deno)
    C_D = res / deno
    #print()
    return C_D
Example #9
0
 def pressed(self):
     x1 = int(self.x1value.text())
     x2 = int(self.x2value.text())
     y1 = int(self.y1value.text())
     y2 = int(self.y2value.text())
     movel = (int(self.movelvalue.text()))
     fixo = (int(self.fixovalue.text()))
     from anastruct import SystemElements
     ss = SystemElements()
     ss.add_element(location=[[x1, y1], [x2, y2]])
     ss.add_support_hinged(node_id=movel)
     ss.add_support_fixed(node_id=fixo)
     ss.q_load(element_id=1, q=-10)
     ss.solve()
     ss.show_structure()
     ss.show_reaction_force()
Example #10
0
def test_timoshenko_continuous():
    system = SystemElements()
    system.add_element(location=[[0, 0], [1, 0]],
                       EA=1.4e8,
                       EI=1.167e5,
                       GA=0.8333 * 8.75e6)
    system.q_load(element_id=1, q=5000, direction="y")

    system.add_support_hinged(node_id=1)
    system.add_support_roll(node_id=2)

    system.solve()

    assert np.isclose(np.max(abs(system.element_map[1].deflection)),
                      6.44e-4,
                      rtol=1e-2)
Example #11
0
def test_example():
    system = SystemElements()
    system.add_element(location=[[0, 0], [3, 4]], EA=5e9, EI=8000)
    system.add_element(location=[[3, 4], [8, 4]], EA=5e9, EI=4000)
    system.q_load(element_id=2, q=-10)
    system.add_support_hinged(node_id=1)
    system.add_support_fixed(node_id=3)

    sol = np.fromstring(
        """0.00000000e+00   0.00000000e+00   1.30206878e-03   1.99999732e-08
       5.24999402e-08  -2.60416607e-03   0.00000000e+00   0.00000000e+00
       0.00000000e+00""",
        float,
        sep=" ",
    )
    system.solve
    assert np.allclose(system.solve(), sol)
Example #12
0
def Beam_objective_funciton(breadth):
    depth = randgen(300,600)
    Asc = 0 
    Ast = 0
    spacing = 150
    beam = Beam(depth,breadth,Asc,Ast,15,415,415,3.14*10**2/4,spacing);
    Asc = beam.p_min 
    Ast = beam.p_min
    beam1 = Beam(depth,breadth,Asc,Ast,15,415,415,3.14*10**2/4,spacing);
    beam1.moment_capcity()
    beam1.min_spacing()
    beam1.max_spacing()


    FS = SystemElements()

    # Add beams to the system.
    FS.add_element(location=[0, 5],EA=15000, EI=5000)
    FS.add_element(location=[[0, 5], [5, 5]],EA=15000, EI=5000)
    FS.add_element(location=[[5, 5], [5, 0]],EA=15000, EI=5000)
    
    # Add a fixed support at node 1.
    FS.add_support_fixed(node_id=1)
    
    # Add a rotational spring support at node 4.
    FS.add_support_spring(node_id=4, translation=3, k=4000)
    
    # Add loads.
    FS.point_load(Fx=30, node_id=2)
    FS.q_load(q=-10, element_id=2)
    FS.q_load(q=-10, element_id=1)
    #ss.q_load(q=-10, element_id=4)
    #print(ss.node_ranges())
    
    # Solve
    FS.solve()

    FS.get_element_results(element_id=1)['length']
    FS.get_element_results(element_id=1)['Mmin']
    FS.get_element_results(element_id=1)['Mmax']


    print(beam1.moment_capcity()*10**(-3))
    print(FS.get_element_results(element_id=1)['Mmax'])
Example #13
0
def test_moment_load_benchmark():
    system = SystemElements()
    system.add_element(location=[[3.75, 0]], EA=5e12, EI=5e12)
    system.add_element(location=[[7.5,0]], EA=5e12, EI=5e12)

    system.q_moment(element_id=1, Ty=1.91)
    system.q_moment(element_id=2, Ty=1.91)
    system.q_load(element_id=1, q=3.62, direction="y")
    system.q_load(element_id=2, q=3.62, direction="y")

    system.add_support_spring(1, 2, 5)
    system.add_support_spring(2, 2, 2.5)
    system.add_support_spring(3, 2, 2.5)


    system.solve()
    assert np.isclose(np.max(abs(system.element_map[1].bending_moment)), 13.89,rtol=1e-2)

    assert np.isclose(system.reaction_forces[1].Fz, 11.93,rtol=1e-2)
Example #14
0
def test_moment_load_benchmark_2():
    system = SystemElements()
    system.add_element(location=[[3.125, 0]], EA=5e12, EI=5e12)
    system.add_element(location=[[5.625+3.125,0]], EA=5e12, EI=5e12)

    system.q_moment(element_id=1, Ty=1.836)
    system.q_moment(element_id=2, Ty=1.836)
    system.q_load(element_id=1, q=4.08, direction="y")
    system.q_load(element_id=2, q=4.08, direction="y")

    system.add_support_spring(1, 2, 3.75)
    system.add_support_spring(2, 2, 2.5)
    system.add_support_spring(3, 2, 2.5)

    #system.add_support_hinged(1)
    #system.add_support_hinged(2)
    #system.add_support_hinged(3)

    system.solve()
    assert np.isclose(np.max(abs(system.element_map[2].bending_moment)), 24.87,rtol=1e-2)
    assert np.isclose(np.max(abs(system.element_map[1].shear_force)), 13.2,rtol=1e-2)
Example #15
0
def test_struct():
    ss = SystemElements()
    ss.add_element([[0, 0], [1, 0]])
    ss.add_element([[1, 0], [1, 1]])
    ss.add_element([[1, 0], [2, 0]])
    ss.add_element([[2, 0], [3, 0]])
    ss.add_element([[3, 0], [4, 1]])
    ss.add_element([[4, 1], [5, 1]])
    ss.point_load(2, Fy=10)
    ss.point_load(3, Fy=-20, Fx=5)
    ss.point_load(4, Fy=-30)
    ss.point_load(5, Fx=-40)
    ss.moment_load(2, Ty=-9)
    ss.moment_load(1, 7)
    ss.moment_load(3, 3)
    ss.q_load(element_id=3, q=(-10, -20))
    ss.q_load(element_id=5, q=(-10, -20))
    ss.add_support_roll(4)
    ss.add_support_hinged(5)
    # ss.add_support_fixed(3)

    mn = Manager(ss)
    mn.generate_pdf(pdf_path=r"C:\testfolder")
Example #16
0
def test_struct2():
    ss = SystemElements()
    ss.add_element([[0, 0], [1, 0]])
    ss.add_element([[1, 0], [1, 1]])
    ss.add_element([[1, 0], [2, 0]])
    ss.add_element([[2, 0], [3, 0]])
    ss.add_element([[3, 0], [4, 1]])
    ss.add_element([[4, 1], [5, 1]])
    ss.point_load(2, Fy=10)
    ss.point_load(3, Fy=-20)
    ss.point_load(4, Fy=-30)
    ss.point_load(5, Fx=-40)
    ss.moment_load(2, Ty=-9)
    ss.moment_load(1, 7)
    ss.moment_load(3, 3)
    ss.q_load(element_id=3, q=(-10, -20))
    ss.add_support_roll(4)
    ss.add_support_hinged(5)
    # ss.show_structure()
    ss.solve()
    ss.show_reaction_force(show=False)
    ass = Assembler(ss)
    ass.assemble_structure(main_path=Setting.longest)
    [print(element.id, values) for element, values in ass.internal_stresses_dict.items()]
Example #17
0
class Artist:
    fig_counter = 0

    def __init__(
        self,
        system_elements,
        node_order=None,
        assemble_order=None,
        target_dir="tmp",
    ):
        self.ss = system_elements
        self.branch_ss = SystemElements()
        self.assemble_order = assemble_order
        self.node_order = node_order
        self.target_dir = target_dir

    def draw_structure(self,
                       show=False,
                       save_figure=True,
                       plotting_start_node=0,
                       element_id=0):
        plot_iterations = False
        node_index = 0
        figure = plt.figure(figsize=(12, 8))
        subplot = figure.add_subplot(111)
        plt.tight_layout()

        for branch in self.assemble_order:
            self.draw_element(branch)
            first_node = next(i for i in self.node_order
                              if i == branch[0] or i == branch[1])

            for roll in self.ss.supports_roll:
                if roll.id == first_node:
                    self.draw_support(first_node, subplot)

            for hinged in self.ss.supports_hinged:
                if hinged.id == first_node:
                    self.draw_support(first_node, subplot)

            for fixed in self.ss.supports_fixed:
                if fixed.id == first_node:
                    self.draw_support(first_node, subplot)

            if self.ss.loads_point.get(first_node):
                self.draw_point_load(first_node)

            if self.ss.loads_moment.get(first_node):
                self.draw_moment(first_node)

            elements_node1 = self.ss.node_element_map.get(branch[0])
            elements_node2 = self.ss.node_element_map.get(branch[1])
            for element in elements_node1:
                if element in elements_node2:
                    q_load = self.ss.loads_q.get(element.id)
                    if q_load:
                        if branch == self.assemble_order[-1]:
                            self.draw_q_load(
                                get_relative_element_by_coordinates(
                                    self.ss, self.branch_ss, element.id),
                                q_load)
                        else:
                            xi = element.vertex_1.x
                            yi = element.vertex_1.y
                            xf = element.vertex_2.x
                            yf = element.vertex_2.y
                            x_average = (xi + xf) / 2
                            y_average = (yi + yf) / 2
                            base = ((xf - xi)**2 + (yf - yi)**2)**0.5
                            load = ((-q_load[0][0] + -q_load[1][0]) * base) / 2
                            Fz = load * math.cos(element.angle)
                            Fx = load * math.cos(element.angle -
                                                 (90 * math.pi / 180))
                            h = 0.2 * self.ss.plotter.max_val_structure
                            x, y, len_x, len_y, point_load = get_arrow_patch_values(
                                Fx, Fz, (x_average, y_average), h)
                            plot_arrow(subplot, point_load,
                                       [h, h, [x, y, len_x, len_y]])
                            # needs further testing
                    break

            node_index += 1
            if plotting_start_node in branch:
                plot_iterations = True
            if show and plot_iterations:
                self.branch_ss.show_structure(show=False,
                                              figure=(figure, subplot))
                figure.show()
            if save_figure and plot_iterations:
                fig = self.branch_ss.show_structure(show=False,
                                                    figure=(figure, subplot))
                fig.savefig(fr'{self.target_dir}\figs\structure{element_id}')

    def generate_figures_for_pdf(self):
        fig = self.ss.show_structure(show=False)
        fig.savefig(fr'{self.target_dir}\figs\structure')
        fig = self.ss.show_structure(show=False, free_body_diagram=3)
        fig.savefig(fr'{self.target_dir}\figs\diagram1')
        fig = self.ss.show_structure(show=False, free_body_diagram=2)
        fig.savefig(fr'{self.target_dir}\figs\diagram2')
        fig = self.ss.show_reaction_force(show=False)
        fig.savefig(fr'{self.target_dir}\figs\supports')
        fig = self.ss.show_axial_force(show=False)
        fig.savefig(fr'{self.target_dir}\figs\axial')
        fig = self.ss.show_shear_force(show=False)
        fig.savefig(fr'{self.target_dir}\figs\shear')
        fig = self.ss.show_bending_moment(show=False)
        fig.savefig(fr'{self.target_dir}\figs\moment')

    def draw_support(self, node_id, subplot, roll_direction=None):
        support_node = self.ss.reaction_forces.get(node_id)
        if round(support_node.Fx, 2):
            plot_arrow(subplot, support_node.Fx,
                       self.ss.reaction_vectors_data.get(f"{node_id}Fx"))
        if round(support_node.Fz, 2):
            plot_arrow(subplot, support_node.Fz,
                       self.ss.reaction_vectors_data.get(f"{node_id}Fz"))
        if round(support_node.Ty, 2):
            plot_moment(subplot, self.ss.node_map.get(node_id),
                        support_node.Ty,
                        self.ss.reaction_vectors_data.get(f"{node_id}Ty"))

    def draw_element(self, branch):
        self.add_element_to_plot(branch)

    def add_element_to_plot(self, element):
        for node in range(len(element) - 1):
            self.branch_ss.add_element(
                [[
                    self.ss.node_map.get(element[node]).vertex.x,
                    self.ss.node_map.get(element[node]).vertex.y
                ],
                 [
                     self.ss.node_map.get(element[node + 1]).vertex.x,
                     self.ss.node_map.get(element[node + 1]).vertex.y
                 ]])

    def draw_point_load(self, node_id):
        point_load = self.ss.loads_point[node_id]
        self.branch_ss.point_load(
            node_id=self.get_relative_node_by_coordinates(node_id),
            Fx=point_load[0],
            Fy=-point_load[1])

    def draw_q_load(self, element_id, q_load):
        self.branch_ss.q_load(element_id=element_id,
                              q=(q_load[0][0], q_load[1][0]))

    def draw_moment(self, node_id):
        moment_load = self.ss.loads_moment.get(node_id)
        self.branch_ss.moment_load(
            node_id=self.get_relative_node_by_coordinates(node_id),
            Ty=moment_load)

    def get_relative_node_by_coordinates(self, node_id):
        coords = (self.ss.node_map.get(node_id).vertex.x,
                  self.ss.node_map.get(node_id).vertex.y)
        for node_key in self.branch_ss.node_map:
            node = self.branch_ss.node_map.get(node_key)
            if coords[0] == node.vertex.x and coords[1] == node.vertex.y:
                return node.id
        return None
Example #18
0
def shear_design(Ast, B, D, Vu, fck, fy):
    FS = SystemElements()

    # Add beams to the system.
    FS.add_element(location=[0, 5], EA=15000, EI=5000)
    FS.add_element(location=[[0, 5], [5, 5]], EA=15000, EI=5000)
    FS.add_element(location=[[5, 5], [5, 0]], EA=15000, EI=5000)

    # Add a fixed support at node 1.
    FS.add_support_fixed(node_id=1)

    # Add a rotational spring support at node 4.
    FS.add_support_spring(node_id=4, translation=3, k=4000)

    # Add loads.
    FS.point_load(Fx=30, node_id=2)
    FS.q_load(q=-10, element_id=2)
    FS.q_load(q=-10, element_id=1)
    #ss.q_load(q=-10, element_id=4)
    #print(ss.node_ranges())

    # Solve
    FS.solve()

    FS.get_element_results(element_id=1)['length']
    FS.get_element_results(element_id=1)['Mmin']
    deno = FS.get_element_results(element_id=1)['shear']

    #breadth = randgen(300,600)
    #Asc = 0
    #Ast = 0
    #spacing = 150
    #beam = Beam(depth,breadth,Asc,Ast,15,415,415,3.14*10**2/4,spacing)
    #Asc = beam.p_min()
    #Ast = beam.p_min()
    #beam1 = Beam(depth,breadth,Asc,Ast,15,415,415,3.14*10**2/4,spacing)
    #beam1.moment_capcity()
    #beam1.min_spacing()
    #beam1.max_spacing()

    #print(beam1.moment_capcity()*10**(-3))
    #print(FS.get_element_results(element_id=1)['Mmax'])
    res = Beam_gene(depths)

    beam1 = Beam(depth, breadth, Asc, Ast, 15, 415, 415, 3.14 * 10**2 / 4,
                 spacing)
    beam1.moment_capcity()
    beam1.min_spacing()
    beam1.max_spacing()
    # Add a fixed support at node 1.
    FS.add_support_fixed(node_id=1)

    # Add a rotational spring support at node 4.
    FS.add_support_spring(node_id=4, translation=3, k=4000)

    # Add loads.
    FS.point_load(Fx=30, node_id=2)
    FS.q_load(q=-10, element_id=2)
    FS.q_load(q=-10, element_id=1)
    #ss.q_load(q=-10, element_id=4)
    #print(ss.node_ranges())

    # Solve
    FS.solve()

    FS.get_element_results(element_id=1)['length']
    FS.get_element_results(element_id=1)['Mmin']
    FS.get_element_results(element_id=1)['Mmax']
    FS.get_element_results(element_id=1)['shear']

    #print(beam1.moment_capcity()*10**(-3))
    #print(FS.get_element_results(element_id=1)['Mmax'])
    C_D = ((beam1.moment_capcity()) *
           10**(-3)) / (FS.get_element_results(element_id=1)['Mmax'])
    print(C_D)
Example #19
0
from StructuresExplained.solutions.structure.reactions.assembler import Assembler

if __name__ == "__main__":
    from anastruct import SystemElements
    from sympy import sympify

    ss = SystemElements()
    ss.add_element([[0, 0], [1, 0]])
    ss.add_element([[1, 0], [1, 1]])
    ss.add_element([[1, 0], [2, 0]])
    ss.add_element([[2, 0], [3, 0]])
    ss.point_load(2, Fy=10)
    ss.point_load(3, Fy=-20)
    ss.point_load(4, Fy=-30)
    ss.point_load(5, Fx=-40)
    ss.moment_load(2, Ty=-9)
    ss.moment_load(1, 7)
    ss.moment_load(3, 3)
    ss.q_load(element_id=3, q=(-10, -20))
    ss.add_support_roll(4)
    ss.add_support_hinged(5)
    ss.solve()
    ass = Assembler(ss)
    ass.assemble_structure()
    print(
        f"{sympify(ass.res.point_sum_y, evaluate=False)}\n{sympify(ass.res.point_sum_x, evaluate=False)}\n{ass.res.moments_sum}\n")
Example #20
0
from anastruct import SystemElements
import random

def randgen(lb,ub):
	return lb - float(float(random.randint(0,100))/100)*(lb-ub)

ss = SystemElements()
ss.add_element(location=[[0, 0], [0, 3]])
ss.add_element(location=[[0, 3], [3, 3]])
ss.add_element(location=[[3, 3], [3, 0]])
ss.add_element(location=[[0, 3], [0, 6]])
ss.add_element(location=[[0, 6], [3, 6]])
ss.add_element(location=[[3, 6], [3, 3]])
ss.add_support_fixed(node_id=1)
ss.add_support_fixed(node_id=4)
ss.q_load(element_id=2, q=-10)
ss.q_load(element_id=5, q=-10)
ss.solve()
ss.show_structure()
#ss.show_reaction_force()
ss.show_bending_moment()

print(ss.get_element_results(element_id=1)['length'])
print(ss.get_element_results(element_id=1)['Mmin'])
print(ss.get_element_results(element_id=1)['Mmax'])

print(ss.get_element_results(element_id=2)['length'])
print(ss.get_element_results(element_id=2)['Mmin'])
print(ss.get_element_results(element_id=2)['Mmax'])
#ss = SystemElements()
#
def get_diagram():
    '''
    Recebe um parâmetro numerico que identifica o tipo de diagrama a ser retornado
        0 = Estrutural
        1 = Forças de reação
        2 = Axial
        3 = Cortante
        4 = Fletor
        5 = Displacement ?
    Requisita os parâmetros, via json:
        apoio1 e apoio2, que são os tipos dos apoios
        apoio1pos e apoio2pos, que são as posições dos dois apoios
        cargap, que é a posição da carga
        cargam, que é o módulo da carga
    Tipo dos apoios:
        0 = Primeiro gênerio (roll)
        1 = Segundo gênero (hinged)
        2 = Tercêiro Gênero (fixed)
    '''
    tipo = int(request.args.get('tipo'))

    r = requests.get('https://calculusapi.herokuapp.com/test')
    
    apoio1tipo, apoio2tipo  = r.json().get('apoio1'), r.json().get('apoio2')
    apoio1pos, apoio2pos = r.json().get('apoio1p'), r.json().get('apoio2p')

    cargapos  = r.json().get('cargap')
    cargamod = r.json().get('cargam')

  
    ss = SystemElements()

    #criação da barra
    ss.add_element(location=[[0, 0], [3, 0]])
    ss.add_element(location=[[3, 0], [8, 0]])
    
    #adição do primeiro apoio
    if apoio1tipo == 0:
        ss.add_support_roll(node_id=apoio1pos)
    elif apoio1tipo == 1:
        ss.add_support_hinged(node_id=apoio1pos)
    else:
        ss.add_support_fixed(node_id=apoio1pos)

    
    #adição do segundo apoio
    if apoio2tipo == 0:
        ss.add_support_roll(node_id=apoio2pos)
    elif apoio2tipo == 1:
        ss.add_support_hinged(node_id=apoio2pos)
    else:
        ss.add_support_fixed(node_id=apoio2pos)

    
    #adição da carga
    ss.q_load(element_id=cargapos, q=cargamod)
    
    #geração dos diagramas
    ss.solve()
    img = io.BytesIO()
    if tipo == 0:
        ss.show_structure(show=False).savefig(img)
    elif tipo == 1:
    	ss.show_reaction_force(show=False).savefig(img)
    elif tipo == 2:
    	ss.show_axial_force(show=False).savefig(img)
    elif tipo == 3:
    	ss.show_shear_force(show=False).savefig(img)
    elif tipo == 4:
    	ss.show_bending_moment(show=False).savefig(img)
    elif tipo == 5:
    	ss.show_displacement(show=False).savefig(img) 	
    img.seek(0)
    return send_file(img, mimetype='image/png')
Example #22
0
class connections:
    def __init__(self, main_window, main_window_functions):
        self.mw = main_window
        self.fn = main_window_functions
        self.ss = SystemElements()
        self.ss.color_scheme = "dark"
        self.was_solved = False
        self.states = []

    def add_beam(self):
        try:
            self.workaround()
            e = self.mw.elementtype.currentIndex()

            if self.mw.utilizeinfo.isChecked():
                EI = float(self.fn.filter(self.mw.beam_E.text())) * float(
                    self.fn.filter(self.mw.beam_I.text()))
                EA = float(self.fn.filter(self.mw.beam_E.text())) * float(
                    self.fn.filter(self.mw.beam_A.text()))
                element_types = ["beam", "truss"]
                self.ss.add_element(location=[
                    [
                        float(self.fn.filter(self.mw.beam_x1.text())),
                        float(self.fn.filter(self.mw.beam_y1.text()))
                    ],
                    [
                        float(self.fn.filter(self.mw.beam_x2.text())),
                        float(self.fn.filter(self.mw.beam_y2.text()))
                    ]
                ],
                                    EI=EI,
                                    EA=EA,
                                    element_type=element_types[e])

            else:
                self.ss.add_element(
                    location=[[
                        float(self.fn.filter(self.mw.beam_x1.text())),
                        float(self.fn.filter(self.mw.beam_y1.text()))
                    ],
                              [
                                  float(self.fn.filter(
                                      self.mw.beam_x2.text())),
                                  float(self.fn.filter(self.mw.beam_y2.text()))
                              ]])

            self.visualize_structure()
            self.states.append(pickle.dumps(self.ss))
        except:
            self.fn.warning()

    def beam_info(self):
        if self.mw.utilizeinfo.isChecked():
            self.mw.frame_4.setHidden(False)
        else:
            self.mw.frame_4.setHidden(True)

    def element_type_list(self):
        if self.mw.elementtype.currentIndex() == 1:
            self.mw.beam_I.setEnabled(False)
        elif self.mw.elementtype.currentIndex() == 0:
            self.mw.beam_I.setEnabled(True)

    def add_node(self):
        try:
            if int(self.mw.node_id.text()) in self.ss.node_map.keys():
                self.workaround()
                self.ss.insert_node(element_id=int(self.mw.node_id.text()),
                                    location=[
                                        self.fn.filter(self.mw.node_x.text()),
                                        self.fn.filter(self.mw.node_y.text())
                                    ])
                self.mw.last_figure.click()
                self.states.append(pickle.dumps(self.ss))
            else:
                self.fn.invalid_id_warning()
        except:
            self.fn.warning()

    def add_support(self):
        try:
            if int(self.mw.support_pos.text()) in self.ss.node_map.keys():
                self.workaround()
                if self.mw.support_hinged.isChecked():
                    self.ss.add_support_hinged(
                        node_id=int(self.mw.support_pos.text()))
                elif self.mw.support_roll.isChecked():
                    self.ss.add_support_roll(
                        node_id=int(self.mw.support_pos.text()),
                        angle=float(
                            self.fn.filter(self.mw.support_angle.text())))
                elif self.mw.support_fixed.isChecked():
                    self.ss.add_support_fixed(
                        node_id=int(self.mw.support_pos.text()))
                elif self.mw.support_spring.isChecked():
                    self.ss.add_support_spring(
                        node_id=int(self.mw.support_pos.text()),
                        translation=self.mw.spring_translation.text(),
                        k=self.mw.spring_k.text())
                elif self.mw.support_internal_hinge.isChecked():
                    pass

                self.mw.last_figure.click()
                self.states.append(pickle.dumps(self.ss))
                self.fn.enable_buttons()
            else:
                self.fn.invalid_id_warning()

        except:
            self.fn.warning()

    def show_support_stuff(self):
        if self.mw.support_roll.isChecked():
            self.mw.support_angle.setHidden(
                True)  # Always true due to anaStruct bug
            self.mw.label_113.setHidden(
                True)  # Always true due to anaStruct bug
            self.mw.label_27.setHidden(
                True)  # Always true due to anaStruct bug
            self.mw.label_71.setHidden(True)
            self.mw.label_73.setHidden(True)
            self.mw.spring_k.setHidden(True)
            self.mw.spring_translation.setHidden(True)
        elif self.mw.support_spring.isChecked():
            self.mw.label_71.setHidden(False)
            self.mw.label_73.setHidden(False)
            self.mw.spring_k.setHidden(False)
            self.mw.spring_translation.setHidden(False)
            self.mw.support_angle.setHidden(
                True)  # Always true due to anaStruct bug
            self.mw.label_27.setHidden(True)
            self.mw.label_127.setHidden(False)
        else:
            self.mw.support_angle.setHidden(
                True)  # Always true due to anaStruct bug
            self.mw.label_27.setHidden(True)
            self.mw.label_71.setHidden(True)
            self.mw.label_73.setHidden(True)
            self.mw.spring_k.setHidden(True)
            self.mw.label_113.setHidden(True)
            self.mw.label_127.setHidden(True)
            self.mw.spring_translation.setHidden(True)

    def add_point_load(self):
        try:
            if int(self.mw.load_pos.text()) in self.ss.node_map.keys():
                self.workaround()
                if self.mw.load_moment.text() != '' and float(
                        self.mw.load_moment.text()) != 0:
                    self.ss.moment_load(
                        node_id=int(self.mw.load_pos.text()),
                        Ty=float(self.fn.filter(self.mw.load_moment.text())))

                if float(self.mw.load_y.text()) == 0 and float(
                        self.mw.load_x.text()) == 0 and float(
                            self.mw.load_angle.text()) == 0:
                    pass
                elif self.mw.load_y.text() != '' and self.mw.load_x.text(
                ) != '' and self.mw.load_angle.text() != '':
                    self.ss.point_load(
                        node_id=int(self.mw.load_pos.text()),
                        Fy=float(self.fn.filter(self.mw.load_y.text())),
                        Fx=float(self.fn.filter(self.mw.load_x.text())),
                        rotation=float(
                            self.fn.filter(self.mw.load_angle.text())))
                self.mw.last_figure.click()
                self.states.append(pickle.dumps(self.ss))
                self.fn.enable_buttons()
            else:
                self.fn.invalid_id_warning()
        except:
            self.fn.warning()

    def add_q_load(self):
        try:
            if int(self.mw.qload_pos.text()) in self.ss.node_map.keys():
                if float(self.mw.qload_initial.text()) >= 0 and float(self.mw.qload_final.text()) >= 0 or \
                        float(self.mw.qload_initial.text()) <= 0 and float(self.mw.qload_final.text()) <= 0:
                    self.workaround()
                    if self.mw.qload_initial.text() == '':
                        self.mw.qload_final.setText(
                            self.fn.filter(self.mw.qload_final.text()))
                    if self.mw.qload_final.text() == '':
                        self.mw.qload_final.setText(
                            self.fn.filter(self.mw.qload_initial.text()))
                    self.ss.q_load(
                        element_id=int(self.mw.qload_pos.text()),
                        q=(float(self.fn.filter(self.mw.qload_initial.text())),
                           float(self.fn.filter(self.mw.qload_final.text()))))
                    self.mw.last_figure.click()
                    self.states.append(pickle.dumps(self.ss))
                    self.fn.enable_buttons()
                else:
                    msg = QMessageBox()
                    msg.setWindowTitle(self.mw.warning_title)
                    msg.setText(self.mw.qload_warning)
                    msg.setIcon(QMessageBox.Warning)
                    x = msg.exec_()
            else:
                self.fn.invalid_id_warning()
        except:
            self.fn.warning()

    def visualize_structure(self):
        if self.ss.element_map:
            self.mw.MplWidget.canvas.figure.clear()
            ax = self.mw.MplWidget.canvas.figure.add_subplot(111)
            self.fn.visualize(
                self.ss.show_structure(show=False,
                                       figure=(self.mw.MplWidget.canvas.figure,
                                               ax)))
            ax.patch.set_alpha(0.2)
            self.mw.last_figure = self.mw.show_structure
        else:
            self.mw.MplWidget.plot(has_grid=self.mw.gridBox.isChecked())
            self.fn.figurefix()
            self.mw.last_figure = None

    def visualize_diagram(self):
        self.solve()
        self.mw.MplWidget.canvas.figure.clear()
        ax = self.mw.MplWidget.canvas.figure.add_subplot(111)
        ax.patch.set_alpha(0.2)
        self.fn.visualize(
            self.ss.show_structure(show=False,
                                   free_body_diagram=1,
                                   figure=(self.mw.MplWidget.canvas.figure,
                                           ax)))
        self.mw.last_figure = self.mw.show_diagram

    def visualize_supports(self):
        self.solve()
        self.mw.MplWidget.canvas.figure.clear()
        ax = self.mw.MplWidget.canvas.figure.add_subplot(111)
        ax.patch.set_alpha(0.2)
        self.fn.visualize(
            self.ss.show_reaction_force(
                show=False, figure=(self.mw.MplWidget.canvas.figure, ax)))
        self.mw.last_figure = self.mw.show_supports

    def visualize_normal(self):
        self.solve()
        self.mw.MplWidget.canvas.figure.clear()
        ax = self.mw.MplWidget.canvas.figure.add_subplot(111)
        ax.patch.set_alpha(0.2)
        self.fn.visualize(
            self.ss.show_axial_force(show=False,
                                     figure=(self.mw.MplWidget.canvas.figure,
                                             ax)))
        self.mw.last_figure = self.mw.show_normal

    def visualize_shear(self):
        self.solve()
        self.mw.MplWidget.canvas.figure.clear()
        ax = self.mw.MplWidget.canvas.figure.add_subplot(111)
        ax.patch.set_alpha(0.2)
        self.fn.visualize(
            self.ss.show_shear_force(show=False,
                                     figure=(self.mw.MplWidget.canvas.figure,
                                             ax)))
        self.mw.last_figure = self.mw.show_shear

    def visualize_moment(self):
        self.solve()
        self.mw.MplWidget.canvas.figure.clear()
        ax = self.mw.MplWidget.canvas.figure.add_subplot(111)
        ax.patch.set_alpha(0.2)
        self.fn.visualize(
            self.ss.show_bending_moment(
                show=False, figure=(self.mw.MplWidget.canvas.figure, ax)))
        self.mw.last_figure = self.mw.show_moment

    def visualize_displacement(self):
        self.solve()
        self.mw.MplWidget.canvas.figure.clear()
        ax = self.mw.MplWidget.canvas.figure.add_subplot(111)
        ax.patch.set_alpha(0.2)
        self.fn.visualize(
            self.ss.show_displacement(show=False,
                                      figure=(self.mw.MplWidget.canvas.figure,
                                              ax)))
        self.mw.last_figure = self.mw.show_displacement

    def solve(self):
        self.was_solved = True
        self.ss.solve()

    def static_solver(self, clean=True):
        if find_executable('latex'):
            if self.mw.show_moment.isEnabled():
                if (len(self.ss.supports_roll) == 1 and len(self.ss.supports_hinged) == 1) \
                        or (len(self.ss.supports_fixed) == 1):
                    dialog = QDialog()
                    prompt = PathPrompt(self.mw.language, dialog)
                    dialog.exec_()
                    if not prompt.userTerminated:
                        solve_path = prompt.path
                        file, ok = QFileDialog.getSaveFileName(
                            self.mw, self.mw.pdf_title, self.mw.pdf_text,
                            "PDF (*.pdf)")
                        if ok:
                            try:
                                self.mw.toolBox.setCurrentIndex(0)
                                pdf_dir, filename = split_dir_filename(file)
                                make_pdf_folders(pdf_dir)

                                self.ss.color_scheme = "bright"
                                plt.style.use('default')

                                mn = Manager(self.ss)

                                pdf_generator_thread = PDFGeneratorThread(
                                    mn.generate_pdf,
                                    self.mw.language,
                                    pdf_path=pdf_dir,
                                    filename=filename,
                                    solve_path=solve_path,
                                    path_warning=self.fn.path_warning,
                                )

                                self.fn.setupLoading(pdf_generator_thread)

                                pdf_generator_thread.finished.connect(
                                    self.on_finished)

                                pdf_generator_thread.start()
                                self.mw.loadingScreen.exec_()

                                if not self.mw.loadingUi.userTerminated:
                                    self.fn.pdf_generated_prompt()
                                if clean:
                                    delete_folder(pdf_dir)
                                self.ss.color_scheme = "dark"
                                plt.style.use('dark_background')

                            except:
                                self.fn.latex_packages_warning()
                else:
                    self.fn.static_warning()
            else:
                self.fn.warning()
        else:
            self.fn.latex_warning()

    def on_finished(self):
        self.mw.loadingScreen.close()

    def reset_struct_elems(self):
        self.ss = SystemElements()
        self.ss.color_scheme = "dark"
        self.states.clear()
        self.mw.MplWidget.plot(has_grid=self.mw.gridBox.isChecked())
        self.mw.MplWidget.set_background_alpha()
        self.mw.MplWidget.set_subplot_alpha()
        self.fn.figurefix()
        self.was_solved = False
        self.fn.disable_buttons()

    def load_structure_aux(self, file):
        with open(f'{file}', 'rb') as f:
            self.ss, _, _ = pickle.load(f)
        self.mw.struct_loaded = True

    def workaround(self):
        if self.was_solved:
            self.ss = pickle.loads(self.states[-1])
            self.was_solved = False

    def reset(self):
        self.workaround()
        self.ss.remove_loads()
        self.mw.MplWidget.canvas.figure.clear()
        ax = self.mw.MplWidget.canvas.figure.add_subplot(111)
        ax.patch.set_alpha(0.2)
        self.fn.visualize(
            self.ss.show_structure(show=False,
                                   figure=(self.mw.MplWidget.canvas.figure,
                                           ax)))
        self.states.append(pickle.dumps(self.ss))
        self.fn.disable_buttons()
Example #23
0
# Add a fixed support at node 1.
ss.add_support_fixed(node_id=1)
ss.add_support_fixed(node_id=4)
#ss.add_support_fixed(node_id=1)
# Add a rotational spring support at node 4.
#ss.add_support_spring(node_id=4, translation=3, k=4000)

# Add loads.
#ss.point_load(Fx=, node_id=2)
#ss.point_load(Fx=30, node_id=5)
#ss.point_load(Fx=30, node_id=7)
#ss.point_load(Fx=30, node_id=9)
#ss.point_load(Fx=30, node_id=11)
#
ss.q_load(q=-10, element_id=2)
ss.q_load(q=-10, element_id=5)
ss.q_load(q=-10, element_id=8)
ss.q_load(q=-10, element_id=11)
ss.q_load(q=-10, element_id=14)
ss.q_load(q=-10, element_id=17)
ss.q_load(q=-10, element_id=20)
#ss.q_load(q=-10, element_id=4)
#print(ss.node_ranges())
ss.point_load(Fx=2.477, node_id=2)
ss.point_load(Fx=9.991, node_id=5)
ss.point_load(Fx=15.032, node_id=7)
ss.point_load(Fx=15.032, node_id=9)
ss.point_load(Fx=20.477, node_id=11)
ss.point_load(Fx=32.991, node_id=13)
ss.point_load(Fx=48.032, node_id=15)
Example #24
0
ss = SystemElements()

# Add beams to the system.
ss.add_element(location=[0, 5], EA=15000, EI=5000)
ss.add_element(location=[[0, 5], [5, 5]], EA=15000, EI=5000)
ss.add_element(location=[[5, 5], [5, 0]], EA=15000, EI=5000)

# Add a fixed support at node 1.
ss.add_support_fixed(node_id=1)

# Add a rotational spring support at node 4.
ss.add_support_spring(node_id=4, translation=3, k=4000)

# Add loads.
ss.point_load(Fx=30, node_id=2)
ss.q_load(q=-10, element_id=2)
ss.q_load(q=-10, element_id=1)
#ss.q_load(q=-10, element_id=4)
#print(ss.node_ranges())

# Solve
ss.solve()
#print(ss.get_element_results(element_id=1))
#result = (ss.get_element_results(element_id=0, verbose=False))
##for el_result in result:
##	print(el_result['length'])
##	print(el_result['Mmin'])
##	print(el_result['Mmax'])

for i in range(1, 4):
    print("element_id" + str(i))
Example #25
0
 def accept(self):
     try:
         E = float(self.form.editE.text())  # N/mm2
         I = float(self.form.editI.text())  # mm4
         A = float(self.form.editA.text())  # mm2
         ss = SystemElements()
         frame = FreeCAD.ActiveDocument.getObjectsByLabel(
             self.form.comboBox.currentText())[0]
         sk = frame.Base
         j = 0
         # CREATE MEMBERS OF STRUCTURE
         for l in sk.Geometry:
             sp = [i * 1e-3 for i in list(l.StartPoint)[:2]]
             ep = [i * 1e-3 for i in list(l.EndPoint)[:2]]
             if self.combotypes[j].currentText() == 'beam':
                 ss.add_element([sp, ep], EA=E * A * 1e-3, EI=E * I * 1e-9)
             elif self.combotypes[j].currentText() == 'brace':
                 ss.add_truss_element([sp, ep], EA=E * A * 1e-3)
             j += 1
         # SET DISTRIBUTED LOADS
         if self.form.radioFrame.isChecked():
             for i in list(range(len(sk.Geometry))):
                 if self.form.tableDistrib.item(i, 2):
                     item = self.form.tableDistrib.item(i, 2)
                     try:
                         load = float(item.text())  # kN/m
                         ss.q_load(element_id=(i + 1), q=load)
                     except:
                         pass
         for c in self.combos:
             i = self.combos.index(c) + 1
             # SET NODE CONSTRAINTS
             if c.currentText() == 'fix': ss.add_support_fixed(node_id=i)
             elif c.currentText() == 'hinge':
                 ss.add_support_hinged(node_id=i)
             elif c.currentText() == 'roll':
                 ss.add_support_roll(node_id=i)
             # SET NODE FORCES
             if self.form.tableConc.item(
                     i - 1, 1) or self.form.tableConc.item(i - 1, 2):
                 itemX = self.form.tableConc.item(i - 1, 1)
                 try:
                     loadX = float(itemX.text())  # kN
                 except:
                     loadX = 0
                 itemY = self.form.tableConc.item(i - 1, 2)  # kN
                 try:
                     loadY = float(itemY.text())
                 except:
                     loadY = 0
                 ss.point_load(node_id=(i), Fx=loadX, Fy=loadY)
         # SOLVE AND VALIDATE
         ss.solve()
         # stable=ss.validate(.0000001)
         # SHOW RESULTS ACCORDING THE CALC TYPE
         if True:  #stable:
             if self.form.radioFrame.isChecked():
                 ss.show_results()
             elif self.form.radioTruss.isChecked():
                 ss.show_axial_force()
         else:
             FreeCAD.Console.PrintError('The structure is not stable.\n')
     except:
         FreeCAD.Console.PrintError('Invalid input\n')
         for l in self.labNodes + self.labEl:
             l.removeLabel()