def __init__(self, system, config): TGBase.__init__(self, system, config, add_sn=False) # check if K1-K8 sums up to 1 self._sumK18 = ConstService(v_str='K1+K2+K3+K4+K5+K6+K7+K8', info='summation of K1-K8', tex_name=r"\sum_{i=1}^8 K_i") self._K18c1 = InitChecker( u=self._sumK18, info='summation of K1-K8 and 1.0', equal=1, ) # check if `tm0 * (K2 + k4 + K6 + K8) = tm02 *(K1 + K3 + K5 + K7) self._tm0K2 = PostInitService( info='mul of tm0 and (K2+K4+K6+K8)', v_str='zsyn2*tm0*(K2+K4+K6+K8)', ) self._tm02K1 = PostInitService( info='mul of tm02 and (K1+K3+K5+K6)', v_str='tm02*(K1+K3+K5+K7)', ) self._Pc = InitChecker( u=self._tm0K2, info='proportionality of tm0 and tm02', equal=self._tm02K1, ) self.Sg2 = ExtParam( src='Sn', model='SynGen', indexer=self.syn2, allow_none=True, default=0.0, tex_name='S_{n2}', info='Rated power of Syn2', unit='MVA', export=False, ) self.Sg12 = ParamCalc( self.Sg, self.Sg2, func=np.add, tex_name="S_{g12}", info='Sum of generator power ratings', ) self.Sn = NumSelect( self.Tn, fallback=self.Sg12, tex_name='S_n', info='Turbine or Gen rating', ) self.zsyn2 = FlagValue( self.syn2, value=None, tex_name='z_{syn2}', info='Exist flags for syn2', ) self.tm02 = ExtService( src='tm', model='SynGen', indexer=self.syn2, tex_name=r'\tau_{m02}', info='Initial mechanical input of syn2', allow_none=True, default=0.0, ) self.tm012 = ConstService( info='total turbine power', v_str='tm0 + tm02', ) self.tm2 = ExtAlgeb( src='tm', model='SynGen', indexer=self.syn2, allow_none=True, tex_name=r'\tau_{m2}', e_str='zsyn2 * u * (PLP - tm02)', info='Mechanical power to syn2', ) self.wd = Algeb( info='Generator under speed', unit='p.u.', tex_name=r'\omega_{dev}', v_str='0', e_str='(wref - omega) - wd', ) self.LL = LeadLag( u=self.wd, T1=self.T2, T2=self.T1, K=self.K, info='Signal conditioning for wd', ) # `P0` == `tm0` self.vs = Algeb( info='Valve speed', tex_name='V_s', v_str='0', e_str='(LL_y + tm012 + paux - IAW_y) / T3 - vs', ) self.HL = HardLimiter( u=self.vs, lower=self.UC, upper=self.UO, info='Limiter on valve acceleration', ) self.vsl = Algeb( info='Valve move speed after limiter', tex_name='V_{sl}', v_str='vs * HL_zi + UC * HL_zl + UO * HL_zu', e_str='vs * HL_zi + UC * HL_zl + UO * HL_zu - vsl', ) self.IAW = IntegratorAntiWindup( u=self.vsl, T=1, K=1, y0=self.tm012, lower=self.PMIN, upper=self.PMAX, info='Valve position integrator', ) self.L4 = Lag( u=self.IAW_y, T=self.T4, K=1, info='first process', ) self.L5 = Lag( u=self.L4_y, T=self.T5, K=1, info='second (reheat) process', ) self.L6 = Lag( u=self.L5_y, T=self.T6, K=1, info='third process', ) self.L7 = Lag( u=self.L6_y, T=self.T7, K=1, info='fourth (second reheat) process', ) self.PHP = Algeb( info='HP output', tex_name='P_{HP}', v_str='K1*L4_y + K3*L5_y + K5*L6_y + K7*L7_y', e_str='K1*L4_y + K3*L5_y + K5*L6_y + K7*L7_y - PHP', ) self.PLP = Algeb( info='LP output', tex_name='P_{LP}', v_str='K2*L4_y + K4*L5_y + K6*L6_y + K8*L7_y', e_str='K2*L4_y + K4*L5_y + K6*L6_y + K8*L7_y - PLP', ) self.pout.e_str = 'PHP - pout'
def __init__(self, system, config): Model.__init__(self, system, config) self.group = 'RenPlant' self.flags.tds = True self.config.add(OrderedDict(( ('kqs', 2), ('ksg', 2), ('freeze', 1), ))) self.config.add_extra( '_help', kqs='Tracking gain for reactive power PI controller', ksg='Tracking gain for active power PI controller', freeze='Voltage dip freeze flag; 1-enable, 0-disable', ) self.config.add_extra('_tex', kqs='K_{qs}', ksg='K_{sg}', freeze='f_{rz}') # --- from RenExciter --- self.reg = ExtParam( model='RenExciter', src='reg', indexer=self.ree, export=False, info='Retrieved RenGen idx', vtype=str, default=None, ) self.Pext = ExtAlgeb( model='RenExciter', src='Pref', indexer=self.ree, info='Pref from RenExciter renamed as Pext', tex_name='P_{ext}', ) self.Qext = ExtAlgeb( model='RenExciter', src='Qref', indexer=self.ree, info='Qref from RenExciter renamed as Qext', tex_name='Q_{ext}', ) # --- from RenGen --- self.bus = ExtParam( model='RenGen', src='bus', indexer=self.reg, export=False, info='Retrieved bus idx', vtype=str, default=None, ) self.buss = DataSelect(self.busr, self.bus, info='selected bus (bus or busr)') self.busfreq = DeviceFinder(self.busf, link=self.buss, idx_name='bus') # from Bus self.v = ExtAlgeb( model='Bus', src='v', indexer=self.buss, tex_name='V', info='Bus (or busr, if given) terminal voltage', ) self.a = ExtAlgeb( model='Bus', src='a', indexer=self.buss, tex_name=r'\theta', info='Bus (or busr, if given) phase angle', ) self.v0 = ExtService( model='Bus', src='v', indexer=self.buss, tex_name="V_0", info='Initial bus voltage', ) # from BusFreq self.f = ExtAlgeb(model='FreqMeasurement', src='f', indexer=self.busfreq, export=False, info='Bus frequency', unit='p.u.') # from Line self.bus1 = ExtParam( model='ACLine', src='bus1', indexer=self.line, export=False, info='Retrieved Line.bus1 idx', vtype=str, default=None, ) self.bus2 = ExtParam( model='ACLine', src='bus2', indexer=self.line, export=False, info='Retrieved Line.bus2 idx', vtype=str, default=None, ) self.r = ExtParam( model='ACLine', src='r', indexer=self.line, export=False, info='Retrieved Line.r', vtype=str, default=None, ) self.x = ExtParam( model='ACLine', src='x', indexer=self.line, export=False, info='Retrieved Line.x', vtype=str, default=None, ) self.v1 = ExtAlgeb( model='ACLine', src='v1', indexer=self.line, tex_name='V_1', info='Voltage at Line.bus1', ) self.v2 = ExtAlgeb( model='ACLine', src='v2', indexer=self.line, tex_name='V_2', info='Voltage at Line.bus2', ) self.a1 = ExtAlgeb( model='ACLine', src='a1', indexer=self.line, tex_name=r'\theta_1', info='Angle at Line.bus1', ) self.a2 = ExtAlgeb( model='ACLine', src='a2', indexer=self.line, tex_name=r'\theta_2', info='Angle at Line.bus2', ) # -- begin services --- self.Isign = CurrentSign(self.bus, self.bus1, self.bus2, tex_name='I_{sign}') Iline = '(Isign * (v1*exp(1j*a1) - v2*exp(1j*a2)) / (r + 1j*x))' self.Iline = VarService( v_str=Iline, vtype=complex, info='Complex current from bus1 to bus2', tex_name='I_{line}', ) self.Iline0 = ConstService( v_str='Iline', vtype=complex, info='Initial complex current from bus1 to bus2', tex_name='I_{line0}', ) Pline = 're(Isign * v1*exp(1j*a1) * conj((v1*exp(1j*a1) - v2*exp(1j*a2)) / (r + 1j*x)))' self.Pline = VarService( v_str=Pline, vtype=float, info='Complex power from bus1 to bus2', tex_name='P_{line}', ) self.Pline0 = ConstService( v_str='Pline', vtype=float, info='Initial vomplex power from bus1 to bus2', tex_name='P_{line0}', ) Qline = 'im(Isign * v1*exp(1j*a1) * conj((v1*exp(1j*a1) - v2*exp(1j*a2)) / (r + 1j*x)))' self.Qline = VarService( v_str=Qline, vtype=float, info='Complex power from bus1 to bus2', tex_name='Q_{line}', ) self.Qline0 = ConstService( v_str='Qline', vtype=float, info='Initial complex power from bus1 to bus2', tex_name='Q_{line0}', ) self.Rcs = NumSelect( self.Rc, self.r, info='Line R (Rc if provided, otherwise line.r)', tex_name='R_{cs}', ) self.Xcs = NumSelect( self.Xc, self.x, info='Line X (Xc if provided, otherwise line.x)', tex_name='X_{cs}', ) self.Vcomp = VarService( v_str='abs(v*exp(1j*a) - (Rcs + 1j * Xcs) * Iline)', info='Voltage after Rc/Xc compensation', tex_name='V_{comp}') self.SWVC = Switcher(u=self.VCFlag, options=(0, 1), tex_name='SW_{VC}', cache=True) self.SWRef = Switcher(u=self.RefFlag, options=(0, 1), tex_name='SW_{Ref}', cache=True) self.SWF = Switcher(u=self.Fflag, options=(0, 1), tex_name='SW_{F}', cache=True) self.SWPL = Switcher(u=self.PLflag, options=(0, 1), tex_name='SW_{PL}', cache=True) VCsel = '(SWVC_s1 * Vcomp + SWVC_s0 * (Qline * Kc + v))' self.Vref0 = ConstService( v_str='(SWVC_s1 * Vcomp + SWVC_s0 * (Qline0 * Kc + v))', tex_name='V_{ref0}', ) self.s0 = Lag( VCsel, T=self.Tfltr, K=1, tex_name='s_0', info='V filter', ) # s0_y is the filter output of voltage deviation self.s1 = Lag(self.Qline, T=self.Tfltr, K=1, tex_name='s_1') self.Vref = Algeb(v_str='Vref0', e_str='Vref0 - Vref', tex_name='Q_{ref}') self.Qlinef = Algeb(v_str='Qline0', e_str='Qline0 - Qlinef', tex_name='Q_{linef}') Refsel = '(SWRef_s0 * (Qlinef - s1_y) + SWRef_s1 * (Vref - s0_y))' self.Refsel = Algeb(v_str=Refsel, e_str=f'{Refsel} - Refsel', tex_name='R_{efsel}') self.dbd = DeadBand1( u=self.Refsel, lower=self.dbd1, upper=self.dbd2, center=0.0, tex_name='d^{bd}', ) # --- e Hardlimit and hold logic --- self.eHL = Limiter( u=self.dbd_y, lower=self.emin, upper=self.emax, tex_name='e_{HL}', info='Hardlimit on deadband output', ) self.zf = VarService( v_str='Indicator(v < Vfrz) * freeze', tex_name='z_f', info='PI Q input freeze signal', ) self.enf = Algeb( tex_name='e_{nf}', info='e Hardlimit output before freeze', v_str='dbd_y*eHL_zi + emax*eHL_zu + emin*eHL_zl', e_str='dbd_y*eHL_zi + emax*eHL_zu + emin*eHL_zl - enf', ) # --- hold of `enf` when v < vfrz self.eHld = VarHold( u=self.enf, hold=self.zf, tex_name='e_{hld}', info='e Hardlimit output after conditional hold', ) self.s2 = PITrackAW( u='eHld', kp=self.Kp, ki=self.Ki, ks=self.config.kqs, lower=self.Qmin, upper=self.Qmax, info='PI controller for eHL output', tex_name='s_2', ) self.s3 = LeadLag( u=self.s2_y, T1=self.Tft, T2=self.Tfv, K=1, tex_name='s_3', ) # s3_y == Qext # Active power part self.s4 = Lag( self.Pline, T=self.Tp, K=1, tex_name='s_4', info='Pline filter', ) self.Freq_ref = ConstService(v_str='1.0', tex_name='f_{ref}', info='Initial Freq_ref') self.ferr = Algeb( tex_name='f_{err}', info='Frequency deviation', unit='p.u. (Hz)', v_str='(Freq_ref - f)', e_str='(Freq_ref - f) - ferr', ) self.fdbd = DeadBand1( u=self.ferr, center=0.0, lower=self.fdbd1, upper=self.fdbd2, tex_name='f^{dbd}', info='frequency error deadband', ) self.fdlt0 = LessThan( self.fdbd_y, 0.0, tex_name='f_{dlt0}', info='frequency deadband output less than zero', ) fdroop = '(fdbd_y * Ddn * fdlt0_z1 + fdbd_y * Dup * fdlt0_z0)' self.Plant_pref = Algeb( tex_name='P_{ref}', info='Plant P ref', v_str='Pline0', e_str='Pline0 - Plant_pref', ) self.Plerr = Algeb( tex_name='P_{lerr}', info='Pline error', v_str='- s4_y + Plant_pref', e_str='- s4_y + Plant_pref - Plerr', ) self.Perr = Algeb( tex_name='P_{err}', info='Power error before fe limits', v_str=f'{fdroop} + Plerr * SWPL_s1', e_str=f'{fdroop} + Plerr * SWPL_s1 - Perr', ) self.feHL = Limiter( self.Perr, lower=self.femin, upper=self.femax, tex_name='f_{eHL}', info='Limiter for power (frequency) error', ) feout = '(Perr * feHL_zi + femin * feHL_zl + femax * feHL_zu)' self.s5 = PITrackAW( u=feout, kp=self.Kpg, ki=self.Kig, ks=self.config.ksg, lower=self.Pmin, upper=self.Pmax, tex_name='s_5', info='PI for fe limiter output', ) self.s6 = Lag( u=self.s5_y, T=self.Tg, K=1, tex_name='s_6', info='Output filter for Pext', ) Qext = '(s3_y)' Pext = '(SWF_s1 * s6_y)' self.Pext.e_str = Pext self.Qext.e_str = Qext
def __init__(self, system, config): Model.__init__(self, system, config) self.flags.tds = True self.group = 'RenTorque' self.kp1 = ConstService(v_str='(sp2 - sp1) / (p2 - p1)', tex_name='k_{p1}', ) self.kp2 = ConstService(v_str='(sp3 - sp2) / (p3 - p2)', tex_name='k_{p2}', ) self.kp3 = ConstService(v_str='(sp4 - sp3) / (p4 - p3)', tex_name='k_{p3}', ) self.rea = ExtParam(model='RenPitch', src='rea', indexer=self.rep, export=False, ) self.rego = ExtParam(model='RenAerodynamics', src='rego', indexer=self.rea, export=False, ) self.ree = ExtParam(model='RenGovernor', src='ree', indexer=self.rego, export=False, ) self.reg = ExtParam(model='RenExciter', src='reg', indexer=self.ree, export=False,) self.Sngo = ExtParam(model='RenGovernor', src='Sn', indexer=self.rego, tex_name='S_{n,go}', export=False, ) self.Sn = NumSelect(self.Tn, fallback=self.Sngo, tex_name='S_n', info='Turbine or RenGovernor rating', ) self.Pe = ExtAlgeb(model='RenGen', src='Pe', indexer=self.reg, tex_name='P_e', export=False, ) self.s1 = Lag(u=self.Pe, T=self.Tp, K=1.0, tex_name='s_1', info='Pe filter', ) self.fPe = Piecewise(u=self.s1_y, points=('p1', 'p2', 'p3', 'p4'), funs=('sp1', f'sp1 + ({self.s1_y.name} - p1) * kp1', f'sp2 + ({self.s1_y.name} - p2) * kp2', f'sp3 + ({self.s1_y.name} - p3) * kp3', 'sp4'), tex_name='f_{Pe}', info='Piecewise Pe to wref mapping', ) # Overwrite `wg` and `wt` initial values in turbine governors self.wg = ExtState(model='RenGovernor', src='wg', indexer=self.rego, tex_name=r'\omega_g', export=False, v_str='fPe_y', v_setter=True, ) self.wt = ExtState(model='RenGovernor', src='wt', indexer=self.rego, tex_name=r'\omega_t', export=False, v_str='fPe_y', v_setter=True, ) self.s3_y = ExtState(model='RenGovernor', src='s3_y', indexer=self.rego, tex_name='y_{s3}', export=False, v_str='Pref0 / wg / Kshaft', v_setter=True, ) self.w0 = ExtParam(model='RenGovernor', src='w0', indexer=self.rego, tex_name=r'\omega_0', export=False, ) self.Kshaft = ExtService(model='RenGovernor', src='Kshaft', indexer=self.rego, tex_name='K_{shaft}', ) self.wr0 = ExtAlgeb(model='RenGovernor', src='wr0', indexer=self.rego, tex_name=r'\omega_{r0}', export=False, info='Retrieved initial w0 from RenGovernor', v_str='fPe_y', e_str='-w0 + fPe_y', v_setter=True, ename='dwr', tex_ename=r'\Delta \omega_r', ) self.s2 = Lag(u=self.fPe_y, T=self.Twref, K=1.0, tex_name='s_2', info='speed filter', ) self.SWT = Switcher(u=self.Tflag, options=(0, 1), tex_name='SW_{T}', cache=True, ) self.Tsel = Algeb(tex_name='T_{sel}', info='Output after Tflag selector', discrete=self.SWT ) self.Tsel.v_str = 'SWT_s1 * (Pe - Pref0) / wg +' \ 'SWT_s0 * (s2_y - wg)' self.Tsel.e_str = f'{self.Tsel.v_str} - Tsel' self.PI = PIAWHardLimit(u=self.Tsel, kp=self.Kpp, ki=self.Kip, aw_lower=self.Temin, aw_upper=self.Temax, lower=self.Temin, upper=self.Temax, tex_name='PI', info='PI controller', x0='Pref0 / fPe_y', ) # Note: # Reset `wg` of REECA1 to 1.0 becase `wg` has already been multiplied # in the toeque model. # This effectively sets `PFLAG` to 0 if the torque model is connected. self.wge = ExtAlgeb(model='RenExciter', src='wg', indexer=self.ree, tex_name=r'\omega_{ge}', export=False, v_str='1.0', e_str='-fPe_y + 1', v_setter=True, ename='dwg', tex_ename=r'\Delta \omega_g', ) self.Pref0 = ExtService(model='RenExciter', src='p0', indexer=self.ree, tex_name='P_{ref0}', ) self.Pref = ExtAlgeb(model='RenExciter', src='Pref', indexer=self.ree, tex_name='P_{ref}', export=False, e_str='-Pref0 / wge + PI_y * wg', v_str='PI_y * wg', v_setter=True, ename='Pref', tex_ename='P_{ref}', )
def __init__(self, system, config, add_sn=True, add_tm0=True): Model.__init__(self, system, config) self.group = 'TurbineGov' self.flags.update({'tds': True}) self.Sg = ExtParam( src='Sn', model='SynGen', indexer=self.syn, tex_name='S_n', info='Rated power from generator', unit='MVA', export=False, ) if add_sn is True: self.Sn = NumSelect( self.Tn, fallback=self.Sg, tex_name='S_n', info='Turbine or Gen rating', ) self.Vn = ExtParam( src='Vn', model='SynGen', indexer=self.syn, tex_name='V_n', info='Rated voltage from generator', unit='kV', export=False, ) # Note: changing `tm0` is not allowed in any time!! if add_tm0 is True: self.tm0 = ExtService(src='tm', model='SynGen', indexer=self.syn, tex_name=r'\tau_{m0}', info='Initial mechanical input') self.omega = ExtState(src='omega', model='SynGen', indexer=self.syn, tex_name=r'\omega', info='Generator speed', unit='p.u.') # Note: changing `paux0` is allowed. # It is a way how one can input from external programs such as reinforcement learning. self.paux0 = ConstService(v_str='0', tex_name='P_{aux0}', info='const. auxiliary input') self.tm = ExtAlgeb( src='tm', model='SynGen', indexer=self.syn, tex_name=r'\tau_m', e_str='u * (pout - tm0)', info='Mechanical power interface to SynGen', ) # `paux` must be zero upon initialization self.paux = Algeb( info='Auxiliary power input', tex_name='P_{aux}', v_str='paux0', e_str='paux0 - paux', ) self.pout = Algeb( info='Turbine final output power', tex_name='P_{out}', v_str='u*tm0', ) self.wref = Algeb( info='Speed reference variable', tex_name=r'\omega_{ref}', v_str='wref0', e_str='wref0 - wref', )