Example #1
0
    def __init__(self, system, config):
        TGBase.__init__(self, system, config, add_sn=False)

        # check if K1-K8 sums up to 1
        self._sumK18 = ConstService(v_str='K1+K2+K3+K4+K5+K6+K7+K8',
                                    info='summation of K1-K8',
                                    tex_name=r"\sum_{i=1}^8 K_i")
        self._K18c1 = InitChecker(
            u=self._sumK18,
            info='summation of K1-K8 and 1.0',
            equal=1,
        )

        # check if  `tm0 * (K2 + k4 + K6 + K8) = tm02 *(K1 + K3 + K5 + K7)
        self._tm0K2 = PostInitService(
            info='mul of tm0 and (K2+K4+K6+K8)',
            v_str='zsyn2*tm0*(K2+K4+K6+K8)',
        )
        self._tm02K1 = PostInitService(
            info='mul of tm02 and (K1+K3+K5+K6)',
            v_str='tm02*(K1+K3+K5+K7)',
        )
        self._Pc = InitChecker(
            u=self._tm0K2,
            info='proportionality of tm0 and tm02',
            equal=self._tm02K1,
        )

        self.Sg2 = ExtParam(
            src='Sn',
            model='SynGen',
            indexer=self.syn2,
            allow_none=True,
            default=0.0,
            tex_name='S_{n2}',
            info='Rated power of Syn2',
            unit='MVA',
            export=False,
        )
        self.Sg12 = ParamCalc(
            self.Sg,
            self.Sg2,
            func=np.add,
            tex_name="S_{g12}",
            info='Sum of generator power ratings',
        )
        self.Sn = NumSelect(
            self.Tn,
            fallback=self.Sg12,
            tex_name='S_n',
            info='Turbine or Gen rating',
        )

        self.zsyn2 = FlagValue(
            self.syn2,
            value=None,
            tex_name='z_{syn2}',
            info='Exist flags for syn2',
        )

        self.tm02 = ExtService(
            src='tm',
            model='SynGen',
            indexer=self.syn2,
            tex_name=r'\tau_{m02}',
            info='Initial mechanical input of syn2',
            allow_none=True,
            default=0.0,
        )
        self.tm012 = ConstService(
            info='total turbine power',
            v_str='tm0 + tm02',
        )

        self.tm2 = ExtAlgeb(
            src='tm',
            model='SynGen',
            indexer=self.syn2,
            allow_none=True,
            tex_name=r'\tau_{m2}',
            e_str='zsyn2 * u * (PLP - tm02)',
            info='Mechanical power to syn2',
        )

        self.wd = Algeb(
            info='Generator under speed',
            unit='p.u.',
            tex_name=r'\omega_{dev}',
            v_str='0',
            e_str='(wref - omega) - wd',
        )

        self.LL = LeadLag(
            u=self.wd,
            T1=self.T2,
            T2=self.T1,
            K=self.K,
            info='Signal conditioning for wd',
        )

        # `P0` == `tm0`
        self.vs = Algeb(
            info='Valve speed',
            tex_name='V_s',
            v_str='0',
            e_str='(LL_y + tm012 + paux - IAW_y) / T3 - vs',
        )

        self.HL = HardLimiter(
            u=self.vs,
            lower=self.UC,
            upper=self.UO,
            info='Limiter on valve acceleration',
        )

        self.vsl = Algeb(
            info='Valve move speed after limiter',
            tex_name='V_{sl}',
            v_str='vs * HL_zi + UC * HL_zl + UO * HL_zu',
            e_str='vs * HL_zi + UC * HL_zl + UO * HL_zu - vsl',
        )

        self.IAW = IntegratorAntiWindup(
            u=self.vsl,
            T=1,
            K=1,
            y0=self.tm012,
            lower=self.PMIN,
            upper=self.PMAX,
            info='Valve position integrator',
        )

        self.L4 = Lag(
            u=self.IAW_y,
            T=self.T4,
            K=1,
            info='first process',
        )

        self.L5 = Lag(
            u=self.L4_y,
            T=self.T5,
            K=1,
            info='second (reheat) process',
        )

        self.L6 = Lag(
            u=self.L5_y,
            T=self.T6,
            K=1,
            info='third process',
        )

        self.L7 = Lag(
            u=self.L6_y,
            T=self.T7,
            K=1,
            info='fourth (second reheat) process',
        )

        self.PHP = Algeb(
            info='HP output',
            tex_name='P_{HP}',
            v_str='K1*L4_y + K3*L5_y + K5*L6_y + K7*L7_y',
            e_str='K1*L4_y + K3*L5_y + K5*L6_y + K7*L7_y - PHP',
        )

        self.PLP = Algeb(
            info='LP output',
            tex_name='P_{LP}',
            v_str='K2*L4_y + K4*L5_y + K6*L6_y + K8*L7_y',
            e_str='K2*L4_y + K4*L5_y + K6*L6_y + K8*L7_y - PLP',
        )

        self.pout.e_str = 'PHP - pout'
Example #2
0
    def __init__(self, system, config):
        Model.__init__(self, system, config)

        self.group = 'RenPlant'
        self.flags.tds = True

        self.config.add(OrderedDict((
            ('kqs', 2),
            ('ksg', 2),
            ('freeze', 1),
        )))

        self.config.add_extra(
            '_help',
            kqs='Tracking gain for reactive power PI controller',
            ksg='Tracking gain for active power PI controller',
            freeze='Voltage dip freeze flag; 1-enable, 0-disable',
        )
        self.config.add_extra('_tex',
                              kqs='K_{qs}',
                              ksg='K_{sg}',
                              freeze='f_{rz}')

        # --- from RenExciter ---
        self.reg = ExtParam(
            model='RenExciter',
            src='reg',
            indexer=self.ree,
            export=False,
            info='Retrieved RenGen idx',
            vtype=str,
            default=None,
        )
        self.Pext = ExtAlgeb(
            model='RenExciter',
            src='Pref',
            indexer=self.ree,
            info='Pref from RenExciter renamed as Pext',
            tex_name='P_{ext}',
        )

        self.Qext = ExtAlgeb(
            model='RenExciter',
            src='Qref',
            indexer=self.ree,
            info='Qref from RenExciter renamed as Qext',
            tex_name='Q_{ext}',
        )

        # --- from RenGen ---
        self.bus = ExtParam(
            model='RenGen',
            src='bus',
            indexer=self.reg,
            export=False,
            info='Retrieved bus idx',
            vtype=str,
            default=None,
        )

        self.buss = DataSelect(self.busr,
                               self.bus,
                               info='selected bus (bus or busr)')

        self.busfreq = DeviceFinder(self.busf, link=self.buss, idx_name='bus')

        # from Bus
        self.v = ExtAlgeb(
            model='Bus',
            src='v',
            indexer=self.buss,
            tex_name='V',
            info='Bus (or busr, if given) terminal voltage',
        )

        self.a = ExtAlgeb(
            model='Bus',
            src='a',
            indexer=self.buss,
            tex_name=r'\theta',
            info='Bus (or busr, if given) phase angle',
        )

        self.v0 = ExtService(
            model='Bus',
            src='v',
            indexer=self.buss,
            tex_name="V_0",
            info='Initial bus voltage',
        )

        # from BusFreq
        self.f = ExtAlgeb(model='FreqMeasurement',
                          src='f',
                          indexer=self.busfreq,
                          export=False,
                          info='Bus frequency',
                          unit='p.u.')

        # from Line
        self.bus1 = ExtParam(
            model='ACLine',
            src='bus1',
            indexer=self.line,
            export=False,
            info='Retrieved Line.bus1 idx',
            vtype=str,
            default=None,
        )

        self.bus2 = ExtParam(
            model='ACLine',
            src='bus2',
            indexer=self.line,
            export=False,
            info='Retrieved Line.bus2 idx',
            vtype=str,
            default=None,
        )
        self.r = ExtParam(
            model='ACLine',
            src='r',
            indexer=self.line,
            export=False,
            info='Retrieved Line.r',
            vtype=str,
            default=None,
        )

        self.x = ExtParam(
            model='ACLine',
            src='x',
            indexer=self.line,
            export=False,
            info='Retrieved Line.x',
            vtype=str,
            default=None,
        )

        self.v1 = ExtAlgeb(
            model='ACLine',
            src='v1',
            indexer=self.line,
            tex_name='V_1',
            info='Voltage at Line.bus1',
        )

        self.v2 = ExtAlgeb(
            model='ACLine',
            src='v2',
            indexer=self.line,
            tex_name='V_2',
            info='Voltage at Line.bus2',
        )

        self.a1 = ExtAlgeb(
            model='ACLine',
            src='a1',
            indexer=self.line,
            tex_name=r'\theta_1',
            info='Angle at Line.bus1',
        )

        self.a2 = ExtAlgeb(
            model='ACLine',
            src='a2',
            indexer=self.line,
            tex_name=r'\theta_2',
            info='Angle at Line.bus2',
        )

        # -- begin services ---

        self.Isign = CurrentSign(self.bus,
                                 self.bus1,
                                 self.bus2,
                                 tex_name='I_{sign}')

        Iline = '(Isign * (v1*exp(1j*a1) - v2*exp(1j*a2)) / (r + 1j*x))'

        self.Iline = VarService(
            v_str=Iline,
            vtype=complex,
            info='Complex current from bus1 to bus2',
            tex_name='I_{line}',
        )

        self.Iline0 = ConstService(
            v_str='Iline',
            vtype=complex,
            info='Initial complex current from bus1 to bus2',
            tex_name='I_{line0}',
        )

        Pline = 're(Isign * v1*exp(1j*a1) * conj((v1*exp(1j*a1) - v2*exp(1j*a2)) / (r + 1j*x)))'

        self.Pline = VarService(
            v_str=Pline,
            vtype=float,
            info='Complex power from bus1 to bus2',
            tex_name='P_{line}',
        )

        self.Pline0 = ConstService(
            v_str='Pline',
            vtype=float,
            info='Initial vomplex power from bus1 to bus2',
            tex_name='P_{line0}',
        )

        Qline = 'im(Isign * v1*exp(1j*a1) * conj((v1*exp(1j*a1) - v2*exp(1j*a2)) / (r + 1j*x)))'

        self.Qline = VarService(
            v_str=Qline,
            vtype=float,
            info='Complex power from bus1 to bus2',
            tex_name='Q_{line}',
        )

        self.Qline0 = ConstService(
            v_str='Qline',
            vtype=float,
            info='Initial complex power from bus1 to bus2',
            tex_name='Q_{line0}',
        )

        self.Rcs = NumSelect(
            self.Rc,
            self.r,
            info='Line R (Rc if provided, otherwise line.r)',
            tex_name='R_{cs}',
        )

        self.Xcs = NumSelect(
            self.Xc,
            self.x,
            info='Line X (Xc if provided, otherwise line.x)',
            tex_name='X_{cs}',
        )

        self.Vcomp = VarService(
            v_str='abs(v*exp(1j*a) - (Rcs + 1j * Xcs) * Iline)',
            info='Voltage after Rc/Xc compensation',
            tex_name='V_{comp}')

        self.SWVC = Switcher(u=self.VCFlag,
                             options=(0, 1),
                             tex_name='SW_{VC}',
                             cache=True)

        self.SWRef = Switcher(u=self.RefFlag,
                              options=(0, 1),
                              tex_name='SW_{Ref}',
                              cache=True)

        self.SWF = Switcher(u=self.Fflag,
                            options=(0, 1),
                            tex_name='SW_{F}',
                            cache=True)

        self.SWPL = Switcher(u=self.PLflag,
                             options=(0, 1),
                             tex_name='SW_{PL}',
                             cache=True)

        VCsel = '(SWVC_s1 * Vcomp + SWVC_s0 * (Qline * Kc + v))'

        self.Vref0 = ConstService(
            v_str='(SWVC_s1 * Vcomp + SWVC_s0 * (Qline0 * Kc + v))',
            tex_name='V_{ref0}',
        )

        self.s0 = Lag(
            VCsel,
            T=self.Tfltr,
            K=1,
            tex_name='s_0',
            info='V filter',
        )  # s0_y is the filter output of voltage deviation

        self.s1 = Lag(self.Qline, T=self.Tfltr, K=1, tex_name='s_1')

        self.Vref = Algeb(v_str='Vref0',
                          e_str='Vref0 - Vref',
                          tex_name='Q_{ref}')

        self.Qlinef = Algeb(v_str='Qline0',
                            e_str='Qline0 - Qlinef',
                            tex_name='Q_{linef}')

        Refsel = '(SWRef_s0 * (Qlinef - s1_y) + SWRef_s1 * (Vref - s0_y))'

        self.Refsel = Algeb(v_str=Refsel,
                            e_str=f'{Refsel} - Refsel',
                            tex_name='R_{efsel}')

        self.dbd = DeadBand1(
            u=self.Refsel,
            lower=self.dbd1,
            upper=self.dbd2,
            center=0.0,
            tex_name='d^{bd}',
        )

        # --- e Hardlimit and hold logic ---
        self.eHL = Limiter(
            u=self.dbd_y,
            lower=self.emin,
            upper=self.emax,
            tex_name='e_{HL}',
            info='Hardlimit on deadband output',
        )

        self.zf = VarService(
            v_str='Indicator(v < Vfrz) * freeze',
            tex_name='z_f',
            info='PI Q input freeze signal',
        )

        self.enf = Algeb(
            tex_name='e_{nf}',
            info='e Hardlimit output before freeze',
            v_str='dbd_y*eHL_zi + emax*eHL_zu + emin*eHL_zl',
            e_str='dbd_y*eHL_zi + emax*eHL_zu + emin*eHL_zl - enf',
        )

        # --- hold of `enf` when v < vfrz

        self.eHld = VarHold(
            u=self.enf,
            hold=self.zf,
            tex_name='e_{hld}',
            info='e Hardlimit output after conditional hold',
        )

        self.s2 = PITrackAW(
            u='eHld',
            kp=self.Kp,
            ki=self.Ki,
            ks=self.config.kqs,
            lower=self.Qmin,
            upper=self.Qmax,
            info='PI controller for eHL output',
            tex_name='s_2',
        )

        self.s3 = LeadLag(
            u=self.s2_y,
            T1=self.Tft,
            T2=self.Tfv,
            K=1,
            tex_name='s_3',
        )  # s3_y == Qext

        # Active power part

        self.s4 = Lag(
            self.Pline,
            T=self.Tp,
            K=1,
            tex_name='s_4',
            info='Pline filter',
        )

        self.Freq_ref = ConstService(v_str='1.0',
                                     tex_name='f_{ref}',
                                     info='Initial Freq_ref')
        self.ferr = Algeb(
            tex_name='f_{err}',
            info='Frequency deviation',
            unit='p.u. (Hz)',
            v_str='(Freq_ref - f)',
            e_str='(Freq_ref - f) - ferr',
        )

        self.fdbd = DeadBand1(
            u=self.ferr,
            center=0.0,
            lower=self.fdbd1,
            upper=self.fdbd2,
            tex_name='f^{dbd}',
            info='frequency error deadband',
        )

        self.fdlt0 = LessThan(
            self.fdbd_y,
            0.0,
            tex_name='f_{dlt0}',
            info='frequency deadband output less than zero',
        )

        fdroop = '(fdbd_y * Ddn * fdlt0_z1 + fdbd_y * Dup * fdlt0_z0)'

        self.Plant_pref = Algeb(
            tex_name='P_{ref}',
            info='Plant P ref',
            v_str='Pline0',
            e_str='Pline0 - Plant_pref',
        )

        self.Plerr = Algeb(
            tex_name='P_{lerr}',
            info='Pline error',
            v_str='- s4_y + Plant_pref',
            e_str='- s4_y + Plant_pref - Plerr',
        )

        self.Perr = Algeb(
            tex_name='P_{err}',
            info='Power error before fe limits',
            v_str=f'{fdroop} + Plerr * SWPL_s1',
            e_str=f'{fdroop} + Plerr * SWPL_s1 - Perr',
        )

        self.feHL = Limiter(
            self.Perr,
            lower=self.femin,
            upper=self.femax,
            tex_name='f_{eHL}',
            info='Limiter for power (frequency) error',
        )

        feout = '(Perr * feHL_zi + femin * feHL_zl + femax * feHL_zu)'
        self.s5 = PITrackAW(
            u=feout,
            kp=self.Kpg,
            ki=self.Kig,
            ks=self.config.ksg,
            lower=self.Pmin,
            upper=self.Pmax,
            tex_name='s_5',
            info='PI for fe limiter output',
        )

        self.s6 = Lag(
            u=self.s5_y,
            T=self.Tg,
            K=1,
            tex_name='s_6',
            info='Output filter for Pext',
        )

        Qext = '(s3_y)'

        Pext = '(SWF_s1 * s6_y)'

        self.Pext.e_str = Pext

        self.Qext.e_str = Qext
Example #3
0
    def __init__(self, system, config):
        Model.__init__(self, system, config)

        self.flags.tds = True
        self.group = 'RenTorque'

        self.kp1 = ConstService(v_str='(sp2 - sp1) / (p2 - p1)',
                                tex_name='k_{p1}',
                                )
        self.kp2 = ConstService(v_str='(sp3 - sp2) / (p3 - p2)',
                                tex_name='k_{p2}',
                                )
        self.kp3 = ConstService(v_str='(sp4 - sp3) / (p4 - p3)',
                                tex_name='k_{p3}',
                                )

        self.rea = ExtParam(model='RenPitch', src='rea', indexer=self.rep, export=False,
                            )

        self.rego = ExtParam(model='RenAerodynamics', src='rego', indexer=self.rea,
                             export=False,
                             )

        self.ree = ExtParam(model='RenGovernor', src='ree', indexer=self.rego,
                            export=False,
                            )

        self.reg = ExtParam(model='RenExciter', src='reg', indexer=self.ree,
                            export=False,)

        self.Sngo = ExtParam(model='RenGovernor', src='Sn', indexer=self.rego,
                             tex_name='S_{n,go}', export=False,
                             )
        self.Sn = NumSelect(self.Tn,
                            fallback=self.Sngo,
                            tex_name='S_n',
                            info='Turbine or RenGovernor rating',
                            )

        self.Pe = ExtAlgeb(model='RenGen', src='Pe', indexer=self.reg,
                           tex_name='P_e', export=False,
                           )

        self.s1 = Lag(u=self.Pe, T=self.Tp, K=1.0, tex_name='s_1',
                      info='Pe filter',
                      )

        self.fPe = Piecewise(u=self.s1_y,
                             points=('p1', 'p2', 'p3', 'p4'),
                             funs=('sp1',
                                   f'sp1 + ({self.s1_y.name} - p1) * kp1',
                                   f'sp2 + ({self.s1_y.name} - p2) * kp2',
                                   f'sp3 + ({self.s1_y.name} - p3) * kp3',
                                   'sp4'),
                             tex_name='f_{Pe}',
                             info='Piecewise Pe to wref mapping',
                             )

        # Overwrite `wg` and `wt` initial values in turbine governors
        self.wg = ExtState(model='RenGovernor', src='wg', indexer=self.rego,
                           tex_name=r'\omega_g', export=False,
                           v_str='fPe_y',
                           v_setter=True,
                           )

        self.wt = ExtState(model='RenGovernor', src='wt', indexer=self.rego,
                           tex_name=r'\omega_t', export=False,
                           v_str='fPe_y',
                           v_setter=True,
                           )

        self.s3_y = ExtState(model='RenGovernor', src='s3_y', indexer=self.rego,
                             tex_name='y_{s3}', export=False,
                             v_str='Pref0 / wg / Kshaft',
                             v_setter=True,
                             )

        self.w0 = ExtParam(model='RenGovernor', src='w0', indexer=self.rego,
                           tex_name=r'\omega_0', export=False,
                           )

        self.Kshaft = ExtService(model='RenGovernor', src='Kshaft', indexer=self.rego,
                                 tex_name='K_{shaft}',
                                 )

        self.wr0 = ExtAlgeb(model='RenGovernor', src='wr0', indexer=self.rego,
                            tex_name=r'\omega_{r0}', export=False,
                            info='Retrieved initial w0 from RenGovernor',
                            v_str='fPe_y',
                            e_str='-w0 + fPe_y',
                            v_setter=True,
                            ename='dwr',
                            tex_ename=r'\Delta \omega_r',
                            )

        self.s2 = Lag(u=self.fPe_y, T=self.Twref, K=1.0,
                      tex_name='s_2', info='speed filter',
                      )

        self.SWT = Switcher(u=self.Tflag, options=(0, 1),
                            tex_name='SW_{T}',
                            cache=True,
                            )

        self.Tsel = Algeb(tex_name='T_{sel}',
                          info='Output after Tflag selector',
                          discrete=self.SWT
                          )
        self.Tsel.v_str = 'SWT_s1 * (Pe - Pref0) / wg +' \
                          'SWT_s0 * (s2_y - wg)'
        self.Tsel.e_str = f'{self.Tsel.v_str} - Tsel'

        self.PI = PIAWHardLimit(u=self.Tsel, kp=self.Kpp, ki=self.Kip,
                                aw_lower=self.Temin, aw_upper=self.Temax,
                                lower=self.Temin, upper=self.Temax,
                                tex_name='PI',
                                info='PI controller',
                                x0='Pref0 / fPe_y',
                                )

        # Note:
        #   Reset `wg` of REECA1 to 1.0 becase `wg` has already been multiplied
        #   in the toeque model.
        #   This effectively sets `PFLAG` to 0 if the torque model is connected.

        self.wge = ExtAlgeb(model='RenExciter', src='wg', indexer=self.ree,
                            tex_name=r'\omega_{ge}', export=False,
                            v_str='1.0',
                            e_str='-fPe_y + 1',
                            v_setter=True,
                            ename='dwg',
                            tex_ename=r'\Delta \omega_g',
                            )

        self.Pref0 = ExtService(model='RenExciter', src='p0', indexer=self.ree,
                                tex_name='P_{ref0}',
                                )

        self.Pref = ExtAlgeb(model='RenExciter', src='Pref', indexer=self.ree,
                             tex_name='P_{ref}', export=False,
                             e_str='-Pref0 / wge + PI_y * wg',
                             v_str='PI_y * wg',
                             v_setter=True,
                             ename='Pref',
                             tex_ename='P_{ref}',
                             )
Example #4
0
    def __init__(self, system, config, add_sn=True, add_tm0=True):
        Model.__init__(self, system, config)
        self.group = 'TurbineGov'
        self.flags.update({'tds': True})
        self.Sg = ExtParam(
            src='Sn',
            model='SynGen',
            indexer=self.syn,
            tex_name='S_n',
            info='Rated power from generator',
            unit='MVA',
            export=False,
        )
        if add_sn is True:
            self.Sn = NumSelect(
                self.Tn,
                fallback=self.Sg,
                tex_name='S_n',
                info='Turbine or Gen rating',
            )

        self.Vn = ExtParam(
            src='Vn',
            model='SynGen',
            indexer=self.syn,
            tex_name='V_n',
            info='Rated voltage from generator',
            unit='kV',
            export=False,
        )

        # Note: changing `tm0` is not allowed in any time!!
        if add_tm0 is True:
            self.tm0 = ExtService(src='tm',
                                  model='SynGen',
                                  indexer=self.syn,
                                  tex_name=r'\tau_{m0}',
                                  info='Initial mechanical input')

        self.omega = ExtState(src='omega',
                              model='SynGen',
                              indexer=self.syn,
                              tex_name=r'\omega',
                              info='Generator speed',
                              unit='p.u.')

        # Note: changing `paux0` is allowed.
        # It is a way how one can input from external programs such as reinforcement learning.
        self.paux0 = ConstService(v_str='0',
                                  tex_name='P_{aux0}',
                                  info='const. auxiliary input')

        self.tm = ExtAlgeb(
            src='tm',
            model='SynGen',
            indexer=self.syn,
            tex_name=r'\tau_m',
            e_str='u * (pout - tm0)',
            info='Mechanical power interface to SynGen',
        )
        # `paux` must be zero upon initialization
        self.paux = Algeb(
            info='Auxiliary power input',
            tex_name='P_{aux}',
            v_str='paux0',
            e_str='paux0 - paux',
        )
        self.pout = Algeb(
            info='Turbine final output power',
            tex_name='P_{out}',
            v_str='u*tm0',
        )
        self.wref = Algeb(
            info='Speed reference variable',
            tex_name=r'\omega_{ref}',
            v_str='wref0',
            e_str='wref0 - wref',
        )