Example #1
0
    def __init__(self, objectives):
        # pylint: disable=line-too-long

        super().__init__(None, 'calf')

        motors = ['eat_and_forward', 'forward', 'dive_and_forward',
                  'up_and_forward']

        eat_and_forward, forward = frozenset([0]), frozenset([1])
        dive_and_forward, up_and_forward = frozenset([2]), frozenset([3])

        motors_to_action = {eat_and_forward: 'eat_and_forward',
                            forward: 'forward',
                            dive_and_forward: 'dive_and_forward',
                            up_and_forward: 'up_and_forward',
                            '*': '-'}

        motor_model = MotorModel(motors_to_action)


        self.network = N = Network(None, objectives)
        self.status = N.get_NEEDs()
        self.status_history = {'energy':[]}
        s1 = N.add_SENSOR_node(Squid)
        s2 = N.add_SENSOR_node(Song)
        self.network_model = NetworkModel({frozenset([]): 'no_sensors',
                                      frozenset([s1]): 'squid',
                                      frozenset([s2]): 'song',
                                      frozenset([s1,s2]): 'squid_and_song'})

        self.motor_network = M = MotorNetwork(motors, motors_to_action)

        # NOTE: init=agent_start_pos, using a location here (only for debugging),
        #            is a state when MDP:s are used
        self.ndp = NetworkDP(calf_start_pos, self.status, motor_model, gamma=.9,
                             network_model=self.network_model)
        self.q_agent = NetworkQLearningAgent(self.ndp, Ne=0, Rplus=2,
                                             alpha=lambda n: 60./(59+n),
                                             epsilon=0.2,
                                             delta=0.5)

        # compose applies the functions from right to left
        self.program = compose(do(partial(l.debug, 'Calf mnetwork.update'))
                               , do(partial(l.debug, M))
                               , lambda a: do(partial(l.debug, '*** CALF EATING! ***'))(a) if a == 'eat_and_forward' else a
                               , M.update
                               , do(partial(l.debug, 'Calf q_agent'))
                               , self.q_agent
                               , do(partial(l.debug, N))
                               , lambda p: do(partial(l.debug, '*** CALF HEARD SONG! ***'))(p) if s2 in p[0] else p
                               , lambda p: do(partial(l.debug, '*** CALF FOUND SQUID! ***'))(p) if s1 in p[0] else p
                               , do(partial(l.debug, 'Calf network.update'))
                               , N.update
                               , do(partial(l.debug, 'Calf percept'))
                              )
Example #2
0
    def __init__(self, objectives):
        # pylint: disable=line-too-long, too-many-locals

        # program=None
        super().__init__(None, 'mom')

        # Motors and actions
        motors = ['sing_eat_and_forward', 'forward', 'dive_and_forward',
                  'up_and_forward']

        sing_eat_and_forward, forward = frozenset([0]), frozenset([1])
        dive_and_forward, up_and_forward = frozenset([2]), frozenset([3])

        motors_to_action = {sing_eat_and_forward: 'sing_eat_and_forward',
                            forward: 'forward',
                            dive_and_forward: 'dive_and_forward',
                            up_and_forward: 'up_and_forward',
                            '*': '-'}

        motor_model = MotorModel(motors_to_action)


        self.network = N = Network(None, objectives)
        self.status = N.get_NEEDs()
        self.status_history = {'energy':[]}
        s1 = N.add_SENSOR_node(Squid)
        self.network_model = NetworkModel({frozenset(): 'no_sensors',
                                           frozenset([s1]): 'squid'})

        self.motor_network = M = MotorNetwork(motors, motors_to_action)

        # NOTE: init=agent_start_pos, using a location here (only for debugging),
        #            is a state when MDP:s are used
        self.ndp = NetworkDP(mom_start_pos, self.status, motor_model, gamma=.9,
                             network_model=self.network_model)
        self.q_agent = NetworkQLearningAgent(self.ndp, Ne=0, Rplus=2,
                                             alpha=lambda n: 60./(59+n),
                                             epsilon=0.2,
                                             delta=0.5)

        # compose applies the functions from right to left
        self.program = compose(do(partial(l.debug, 'Mom mnetwork.update'))
                               , do(partial(l.debug, M))
                               , M.update
                               , do(partial(l.debug, 'Mom q_agent'))
                               , self.q_agent
                               , do(partial(l.debug, N))
                               , do(partial(l.debug, 'Mom network.update'))
                               , N.update
                               , do(partial(l.debug, 'Mom percept'))
                              )
Example #3
0
    def __init__(self):
        # pylint: disable=line-too-long

        super().__init__(None, 'calf')

        N = Network(None, {'energy': 1.0})
        self.status = N.get_NEEDs()
        self.status_history = {'energy': []}

        s1 = N.add_SENSOR_node(Squid)
        r1 = N.add_RAND_node(0.3)
        r2 = N.add_RAND_node(0.3)
        r3 = N.add_RAND_node(0.3)
        s2 = N.add_SENSOR_node(Song)

        M = MotorNetwork(motors, motors_to_action)

        state_to_motor = {
            frozenset([r1, r2, r3]): forward,
            frozenset([r1, r2]): forward,
            frozenset([r1, r3]): forward,
            frozenset([r2, r3]): forward,
            frozenset([r2]): forward,
            frozenset([r3]): up_and_forward,
            frozenset([r1]): up_and_forward,
            frozenset([]): dive_and_forward
        }

        # compose applies the functions from right to left
        self.program = compose(
            do(partial(l.debug, 'Calf mnetwork.update')),
            M.update,
            do(partial(l.debug, 'Calf state_to_motor')),
            lambda p: eat_and_forward
            if s1 in p[0] else (dive_and_forward
                                if s2 in p[0] else up_and_forward)
            #, lambda s: eat_and_forward if s1 in s else (dive_and_forward if s2 in s else state_to_motor.get(s))
            ,
            lambda p: do(partial(l.info, '--- CALF HEARD SONG, DIVING! ---'))
            (p) if s2 in p[0] else p,
            lambda p: do(partial(l.info, '--- CALF FOUND SQUID, EATING! ---'))
            (p) if s1 in p[0] else p,
            do(partial(l.debug, 'Calf network.update')),
            N.update,
            do(partial(l.debug, 'Calf percept')))
Example #4
0
    def __init__(self, objectives, landmarks):
        # pylint: disable=line-too-long, too-many-locals

        super().__init__(None, 'grid_agent')

        N = Network(None, objectives)
        SENSOR = N.add_SENSOR_node
        self.status = N.get_NEEDs()
        self.status_history = {'energy': [], 'water': []}

        # Create sensors
        SENSOR(Water)
        SENSOR(Energy)
        # create one SENSOR for each square
        sensor_dict = {}
        for lm in landmarks:
            sensor_dict[frozenset([SENSOR(Landmark, lm)])] = lm
        network_model = NetworkModel(sensor_dict)

        M = MotorNetwork(motors, motors_to_action)

        # NOTE: init=agent_start_pos, using a location here (only for debugging),
        #            is a state when MDP:s are used
        self.ndp = NetworkDP(agent_start_pos, self.status, motor_model, .9,
                             network_model)
        self.q_agent = NetworkQLearningAgent(self.ndp,
                                             Ne=0,
                                             Rplus=2,
                                             alpha=lambda n: 60. / (59 + n),
                                             epsilon=0.2,
                                             delta=0.5)

        # compose applies the functions from right to left
        self.program = compose(
            do(partial(l.debug, 'mnetwork.update')), M.update,
            do(partial(l.debug, 'q_agent')), self.q_agent,
            do(partial(l.debug, N)), do(partial(l.debug,
                                                'network.update')), N.update,
            do(partial(l.debug, 'percept')),
            lambda x: do(partial(l.debug, '*** ENERY FOUND ***'))(x)
            if 'energy' in x[1] and x[1]['energy'] > 0.0 else x,
            lambda x: do(partial(l.debug, '*** WATER FOUND ***'))(x)
            if 'water' in x[1] and x[1]['water'] > 0.0 else x, do(self.printU))
Example #5
0
    def __init__(self):
        # pylint: disable=line-too-long, too-many-locals

        super().__init__(None, 'mom')

        N = Network(None, {'energy': 1.0})
        self.status = N.get_NEEDs()
        self.status_history = {'energy': []}

        M = MotorNetwork(motors, motors_to_action)
        SENSOR, RAND, AND = N.add_SENSOR_node, N.add_RAND_node, N.add_AND_node
        NOT, OR = N.add_NOT_node, N.add_OR_node

        s1, r1, r2, r3 = SENSOR(Squid), RAND(0.3), RAND(0.3), RAND(0.3)
        n3 = AND([
            NOT([s1]),
            OR([AND([r1, NOT([r2, r3])]),
                AND([r3, NOT([r1, r2])])])
        ])
        n4 = AND([NOT([s1]), NOT([r1, r2, r3])])
        n2 = NOT([s1, n3, n4])

        state_to_motor = {
            frozenset([s1]): sing_eat_and_forward,
            frozenset([n2]): forward,
            frozenset([n3]): dive_and_forward,
            frozenset([n4]): up_and_forward
        }

        l.info('state_to_motor:', state_to_motor)
        l.info('motors_to_action:', motors_to_action)

        # compose applies the functions from right to left
        self.program = compose(
            do(partial(l.debug, 'Mom mnetwork.update')), M.update,
            do(partial(l.debug, 'Mom state_to_motor')),
            lambda p: state_to_motor.get(p[0]), do(partial(l.debug, N)),
            do(partial(l.debug, 'Mom filter interesting states')), lambda p:
            (p[0] & {s1, n2, n3, n4}, p[1]),
            do(partial(l.debug, 'Mom network.update')), N.update,
            do(partial(l.debug, 'Mom percept')))
Example #6
0
    def test_motor_to_action(self):

        # set([(active_motors, action)])
        # each motor is mapped to one action. It is only meaningful to
        # activate one motor at the time. All other combinations of
        # active motors are mapped to the action '-' (do nothing)
        motors = ['<', '>', '^', 'v']
        motors_to_action1 = {
            frozenset([0]): '<',
            frozenset([1]): '>',
            frozenset([2]): '^',
            frozenset([3]): 'v',
            '*': '-'
        }

        mnetwork = MotorNetwork(motors, motors_to_action1)
        mnetwork.update(frozenset([0]))
        self.assertTrue(mnetwork.get_action() == '<')
        mnetwork.update(frozenset([1]))
        self.assertTrue(mnetwork.get_action() == '>')
        mnetwork.update(frozenset([2]))
        self.assertTrue(mnetwork.get_action() == '^')
        mnetwork.update(frozenset([3]))
        self.assertTrue(mnetwork.get_action() == 'v')

        # Motor model where all combinations of active motors have an action
        motors_to_action2 = {
            frozenset(): '<',
            frozenset([0]): '>',
            frozenset([1]): '^',
            frozenset([0, 1]): 'v'
        }

        mnetwork = MotorNetwork(motors, motors_to_action2)
        mnetwork.update(frozenset())
        self.assertTrue(mnetwork.get_action() == '<')
        mnetwork.update(frozenset([0]))
        self.assertTrue(mnetwork.get_action() == '>')
        mnetwork.update(frozenset([1]))
        self.assertTrue(mnetwork.get_action() == '^')
        mnetwork.update(frozenset([0, 1]))
        self.assertTrue(mnetwork.get_action() == 'v')
Example #7
0
    def test_MOTOR_AND_SEQ(self):
        mnetwork = MotorNetwork()
        n1 = mnetwork.add_MOTOR_node('m1')
        self.assertTrue(mnetwork.get() == set())

        mnetwork.update(set([n1]))
        self.assertTrue(mnetwork.get() == set([0]))

        mnetwork.update(set())
        self.assertTrue(mnetwork.get() == set())

        n2 = mnetwork.add_MOTOR_node('m2')
        mnetwork.update(set([n2]))
        self.assertTrue(mnetwork.get() == set([n2]))

        mnetwork.update(set([n2, n1]))
        self.assertTrue(mnetwork.get() == set([n1, n2]))

        n3 = mnetwork.add_MAND_node([n1, n2])
        mnetwork.update(set())
        self.assertTrue(mnetwork.get() == set())
        mnetwork.update(set([n3]))
        self.assertTrue(mnetwork.get() == set([n1, n2]))

        n4 = mnetwork.add_MOTOR_node('m3')
        n5 = mnetwork.add_MSEQ_node([n3, n4])
        mnetwork.update(set())
        self.assertTrue(mnetwork.get() == set())
        mnetwork.update(set())
        self.assertTrue(mnetwork.get() == set())
        mnetwork.update(set([n5]))
        self.assertTrue(mnetwork.get() == set([n1, n2]))
        mnetwork.update(set())
        self.assertTrue(mnetwork.get() == set([n4]))
        mnetwork.update(set())
        self.assertTrue(mnetwork.get() == set())

        mnetwork.delete_nodes([n5])
        mnetwork.update(set([n4]))
        self.assertTrue(mnetwork.get() == set([n4]))