Example #1
0
    # clf = svm.SVC(C=0.1, kernel='rbf', gamma='auto',
    #               shrinking=True, probability=True, tol=0.0001,
    #               cache_size=1000, max_iter=-1, class_weight='balanced',
    #               decision_function_shape='ovr', random_state=None
    #               )
    # clf=AdaBoostClassifier( n_estimators=150,algorithm='SAMME.R',learning_rate=0.8)#8,9
    # clf=BaggingClassifier(n_estimators=200,max_samples=1.0,max_features=1.0,
    #                       bootstrap=True,bootstrap_features=False,random_state=200)
    clf.fit(train_in, train_out)
    test_predict = clf.predict(test_in)
    proba_test = clf.predict_proba(test_in)

    train_predict = clf.predict(train_in)
    proba_train = clf.predict_proba(train_in)

    test1, test2 = ann.evaluatemodel(train_out, train_predict, proba_train[:,
                                                                           1])
    evaluate_train.extend(test1)
    prenum_train.extend(test2)

    test3, test4 = ann.evaluatemodel(test_out, test_predict,
                                     proba_test[:,
                                                1])  # test model with testset
    evaluate_test.extend(test3)
    prenum_test.extend(test4)

Result_test = pd.DataFrame(
    evaluate_test, columns=['TPR', 'SPC', 'PPV', 'NPV', 'ACC', 'AUC', 'BER'])
# Result_test.to_csv('BER_LR_ks.csv')
Result_test.boxplot()
plt.show()
Example #2
0
    test_predict = sum_pre#测试集的预测结果

    sum_prob = []
    for j in range(np.shape(test_in)[0]):
        colj = predict_prob[:, j]
        if sum_pre[j] == 1:
            tmp_prob = np.mean(colj[colj >= 0.5])
        else:
            tmp_prob = np.mean(colj[colj < 0.5])
        # if tmp_prob == np.nan:
        #     print('test')
        sum_prob.append(tmp_prob)
    sum_prob = np.array(sum_prob)
    proba_test = sum_prob#测试集概率预测结果

    test3, test4 = ann.evaluatemodel(test_out, test_predict, proba_test)  # test model with testset
    evaluate_test.extend(test3)
    prenum_test.extend(test4)

Result_test = pd.DataFrame(evaluate_test, columns=['TPR', 'SPC', 'PPV', 'NPV', 'ACC', 'AUC', 'BER'])
Result_test.to_csv('BER_LR_ks.csv')
Result_test.boxplot()
plt.show()

mean_test = np.mean(evaluate_test, axis=0)
std_test = np.std(evaluate_test, axis=0)
evaluate_test.append(mean_test)
evaluate_test.append(std_test)


evaluate_test = np.array(evaluate_test)
Example #3
0
for train, test in skf.split(dataMat, labelMat):
    print("%s %s" % (train, test))
    train_in = dataMat[train]
    test_in = dataMat[test]
    train_out = labelMat[train]
    test_out = labelMat[test]
    train_in=train_in.reshape(-1,1)#只有一个特征值,过采样前特殊处理
    train_in, train_out = RandomOverSampler().fit_sample(train_in, train_out)

    thre_tmp=findthresh(train_in,train_out)
    thre.append(thre_tmp)

    train_predict = binaryclassify(train_in,thre_tmp)
    test_predict=binaryclassify(test_in,thre_tmp)

    test1, test2 = ann.evaluatemodel(train_out, train_predict, train_in)  # test model with trainset
    evaluate_train.extend(test1)

    test3, test4 = ann.evaluatemodel(test_out, test_predict, test_in)  # test model with testset
    evaluate_test.extend(test3)

Result_test = pd.DataFrame(evaluate_test, columns=['TPR', 'SPC', 'PPV', 'NPV', 'ACC', 'AUC', 'BER'])
Result_test.to_csv('BER/BER_MEWS.csv')
Result_test.boxplot()
plt.show()

mean_train = np.mean(evaluate_train, axis=0)
std_train = np.std(evaluate_train, axis=0)
evaluate_train.append(mean_train)
evaluate_train.append(std_train)
Example #4
0
skf = StratifiedKFold(n_splits=10)  #十折交叉验证
kfold = 1
for train, test in skf.split(dataMat, labelMat):
    print("第%s 次交叉验证:" % kfold)
    train_in = dataMat[train]
    test_in = dataMat[test]
    train_out = labelMat[train]
    test_out = labelMat[test]
    train_in, train_out = RandomOverSampler().fit_sample(train_in,
                                                         train_out)  #平衡测试集样本
    train_predict, test_predict, proba_train, proba_test = ann.ANNClassifier(
        neuo, train_in, train_out, test_in)
    proba_train = proba_train[:, 1]
    proba_test = proba_test[:, 1]
    test1, test2 = ann.evaluatemodel(train_out, train_predict,
                                     proba_train)  #求训练集测试集的评价指标
    evaluate_train.extend(test1)  #训练集的各评价指标,百分比
    prenum_train.extend(test2)  #测试结果中,混淆矩阵对应的四个数

    test3, test4 = ann.evaluatemodel(test_out, test_predict,
                                     proba_test)  #test model with testset
    evaluate_test.extend(test3)
    prenum_test.extend(test4)

    kfold = kfold + 1  #十折交叉验证的次数

#对于测试集,保存模型预测的结果的评价指标,并绘制箱线图
Result_test = pd.DataFrame(
    evaluate_test, columns=['TPR', 'SPC', 'PPV', 'NPV', 'ACC', 'AUC', 'BER'])
Result_test.to_csv('BER/BER_ANN_ks.csv')
Result_test.boxplot()