def main(): size_of_learn_sample = int(len(x) * 0.9) print(size_of_learn_sample) NN = NeuralNetwork(x, y, 0.5) # NN.print_matrices() NN.train() NN.print_matrices()
ground_truth_dataset = [ [15, 3, 1], [10, 5, 1], [20, 1, 1], [1, 5, 0], [5, 0, 0], [30, 0, 1], [2, 1, 0], [5, 5, 1], [7, 10, 0], [25, 6, 1] ] n = NeuralNetwork() stats = n.train(ground_truth_dataset, 100001, 0.001) epochs = stats[0] min_losses = stats[1] avg_losses = stats[2] max_losses = stats[3] with open("model.bin", "wb") as f: pickle.dump(n, f) plt.ylabel("Loss") plt.xlabel("Epoch") plt.plot(epochs, min_losses, label="Min loss") plt.plot(epochs, avg_losses, label="Avg loss") plt.plot(epochs, max_losses, label="Max loss") plt.legend(loc="center") plt.show()