from anna import util from anna.datasets import supervised_dataset from models import CNNModel print('Start') pid = os.getpid() print('PID: {}'.format(pid)) f = open('pid', 'wb') f.write(str(pid) + '\n') f.close() model = CNNModel('experiment', './', learning_rate=1e-2) monitor = util.Monitor(model) # Loading CIFAR-10 dataset print('Loading Data') data_path = '/data/cifar10/' reduced_data_path = os.path.join(data_path, 'reduced', 'cifar10_100') train_data = numpy.load(os.path.join(reduced_data_path, 'train_X_split_0.npy')) train_labels = numpy.load( os.path.join(reduced_data_path, 'train_y_split_0.npy')) test_data = numpy.load('/data/cifar10/test_X.npy') test_labels = numpy.load('/data/cifar10/test_y.npy') train_dataset = supervised_dataset.SupervisedDataset(train_data, train_labels) test_dataset = supervised_dataset.SupervisedDataset(test_data, test_labels) train_iterator = train_dataset.iterator(mode='random_uniform',
checkpoint_dir = os.path.join(args.checkpoint_dir, 'checkpoints_48_' + str(test_split)) print 'Checkpoint dir: ', checkpoint_dir pid = os.getpid() print('PID: {}'.format(pid)) f = open('pid_' + str(test_split), 'wb') f.write(str(pid) + '\n') f.close() # Load model model = SupervisedModel('experiment', './', learning_rate=1e-2) #util.load_checkpoint(model, "./checkpoints_5/experiment-07m-20d-16h-24m-52s.pkl") monitor = util.Monitor(model, checkpoint_directory=checkpoint_dir, save_steps=1000) # Add dropout to fully-connected layer model.fc4.dropout = 0.5 model._compile() # Loading CK+ dataset print('Loading Data') #supervised_data_loader = SupervisedDataLoaderCrossVal( # data_paths.ck_plus_data_path) #train_data_container = supervised_data_loader.load('train', train_split) #test_data_container = supervised_data_loader.load('test', train_split) train_folds, val_fold, _ = data_fold_loader.load_fold_assignment( test_fold=test_split) X_train, y_train = data_fold_loader.load_folds(data_paths.ck_plus_data_path,
w = w.transpose(1, 0) w = w.reshape(channels, width, height, filters) w = numpy.float32(w) return w print('Start') pid = os.getpid() print('PID: {}'.format(pid)) f = open('pid', 'wb') f.write(str(pid) + '\n') f.close() model = CAELayer1Model('experiment', './', learning_rate=1e-4) monitor = util.Monitor(model, save_steps=200) # Loading CIFAR-10 dataset print('Loading Data') train_data = numpy.load('/data/cifar10/train_X.npy') test_data = numpy.load('/data/cifar10/test_X.npy') train_dataset = unsupervised_dataset.UnsupervisedDataset(train_data) test_dataset = unsupervised_dataset.UnsupervisedDataset(test_data) train_iterator = train_dataset.iterator(mode='random_uniform', batch_size=128, num_batches=100000) test_iterator = test_dataset.iterator(mode='sequential', batch_size=128) normer = util.Normer2(filter_size=5, num_channels=3)
print('Start') train_split = int(args.split) if train_split < 0 or train_split > 4: raise Exception("Training Split must be in range 0-4.") print('Using TFD training split: {}'.format(train_split)) pid = os.getpid() print('PID: {}'.format(pid)) f = open('pid_'+str(train_split), 'wb') f.write(str(pid)+'\n') f.close() # Load model model = SupervisedModel('experiment', './', learning_rate=1e-2) monitor = util.Monitor(model, checkpoint_directory='checkpoints_'+str(train_split), save_steps=1000) # Add dropout flag to fully-connected layer model.fc4.dropout = 0.5 model._compile() # Loading TFD dataset print('Loading Data') supervised_data_loader = SupervisedDataLoader( os.path.join(data_paths.tfd_data_path, 'npy_files/TFD_96/split_'+str(train_split))) train_data_container = supervised_data_loader.load(0) val_data_container = supervised_data_loader.load(1) test_data_container = supervised_data_loader.load(2) X_train = train_data_container.X
train_split = int(args.split) if train_split < 0 or train_split > 9: raise Exception("Training Split must be in range 0-9.") print('Using STL10 training split: {}'.format(train_split)) pid = os.getpid() print('PID: {}'.format(pid)) f = open('pid_'+str(train_split), 'wb') f.write(str(pid)+'\n') f.close() model = CNNModel('experiment', './', learning_rate=1e-2) checkpoint = checkpoints.unsupervised_layer3 util.set_parameters_from_unsupervised_model(model, checkpoint) monitor = util.Monitor(model, checkpoint_directory='checkpoints_'+str(train_split)) # Loading STL-10 dataset print('Loading Data') X_train = numpy.load('/data/stl10_matlab/train_splits/train_X_' + str(train_split)+'.npy') y_train = numpy.load('/data/stl10_matlab/train_splits/train_y_' + str(train_split)+'.npy') X_test = numpy.load('/data/stl10_matlab/test_X.npy') y_test = numpy.load('/data/stl10_matlab/test_y.npy') X_train = numpy.float32(X_train) X_train /= 255.0 X_train *= 1.0 X_test = numpy.float32(X_test)