y[500:700] = 1 y[1000:1200] = 2 y[1500:1700] = 1 y[2000:2200] = 1 y[2500:2700] = 2 y[2700:3800] = 3 # Plot marker stream plt.figure(figsize=(8,3)) plt.plot(time, y) plt.ylim(-1, 5) plt.xlabel('Time (s)') plt.ylabel('Value') plt.tight_layout() # Annotate the plot plt.annotate('onset of event\nof type 1', (0.5, 1), xytext=(0.2, 2.1), arrowprops=dict(arrowstyle='->')) plt.annotate('onset of event\nof type 2', (1, 2), xytext=(0.7, 3.1), arrowprops=dict(arrowstyle='->')) plt.annotate('onset of event\nof type 3', (2.7, 3), xytext=(2.4, 4.1), arrowprops=dict(arrowstyle='->')) annotate_horiz(1.5, 1.7, 2, 'duration of event', 0.2) # Save the plot plt.savefig('marker_stream.png')
import golem, psychic from matplotlib import pyplot as plt from annotate import annotate_horiz trials = golem.DataSet.load("../../data/priming-trials.dat") f = plt.figure(figsize=(12, 4)) f.add_axes([0.05, 0.2, 0.38, 0.7]) trials2 = psychic.nodes.Baseline([0.2, 1]).train_apply(trials, trials) psychic.plot_erp(trials2.lix[["P3"], :, :], fig=f, pval=0, vspace=15) annotate_horiz(-0.19, -0.01, 5, "baseline period", 0.5) plt.gca().legend().set_visible(False) plt.title("Uncorrected") f.add_axes([0.55, 0.2, 0.38, 0.7]) trials2 = psychic.nodes.Baseline([-0.2, 0]).train_apply(trials, trials) psychic.plot_erp(trials2.lix[["P3"], :, :], fig=f, pval=0, vspace=15) annotate_horiz(-0.19, -0.01, 5, "baseline period", 0.5) # plt.legend(loc='lower right') plt.gca().legend().set_visible(False) plt.title("Baseline corrected") plt.savefig("baseline.png")
from matplotlib import pyplot as plt from annotate import annotate_horiz import psychic import numpy as np f = plt.figure(figsize=(10,5)) f.add_axes([0.1, 0.1, 0.5, 0.5]) d = psychic.fake.gaussian(4, 10, 100) d = psychic.nodes.Butterworth(4, 15, 'lowpass').train_apply(d, d) psychic.plot_eeg(d, fig=f, vspace=3) plt.ylim(-1.5, 15) plt.title('Sliding window') for i,x in enumerate(np.arange(0, 10, 2.6)): annotate_horiz(x+0.1, x+2.1, 13, 'Trial %d' % (i*2+1), 0.2) if x + 3.4 < 10: annotate_horiz(x+1.4, x+3.4, 11.2, 'Trial %d' % (i*2+2), 0.2) plt.savefig('sliding_window.png')