Example #1
0
    def add_human_annotations(self, image_id, user=None):
        """
        Add human annotations to an image.

        :param user - The user who will be the annotator of these
        annotations.  If not specified, default to the User of
        self.username.
        """


        source = Source.objects.get(pk=self.source_id)
        img = Image.objects.get(pk=image_id)
        points = Point.objects.filter(image=img)
        labels = source.labelset.labels.all()
        if user is None:
            user = User.objects.get(username=self.username)

        # For each point, pick a label randomly from the source's labelset.
        for pt in points:
            label = random.choice(labels)
            anno = Annotation(
                point=pt,
                image=img,
                source=source,
                user=user,
                label=label,
            )
            anno.save()
        img.status.annotatedByHuman = True
        img.status.save()
Example #2
0
    def create(self, validated_data):
        print "In create"
        print validated_data
        annotation = Annotation()
        annotation.author = validated_data.get('author')
        annotation.body = validated_data.get('body')
        annotation.content_type = validated_data.get('content_type')
        annotation.object_id = validated_data.get('object_id')
        annotation.paragraph = validated_data.get('paragraph')
        
        annotation.privacy = validated_data.get('privacy')
        annotation.privacy_override = validated_data.get('privacy_override', False)

        #Get row from contentType which has content_type
        content_object = ContentType.objects.get_for_id(annotation.content_type.id)
        
        annotation.content_object = content_object.model_class().objects.get(id=annotation.object_id)
        
        print annotation.content_object          
        annotation.save()

        print validated_data.get('shared_with')
        for user in validated_data.get('shared_with'):
            sharing = AnnotationShareMap(annotation=annotation, 
                                                    user=user)
            sharing.save()
        
        return annotation
    def create(self, validated_data):
        print "In create"
        print validated_data
        annotation = Annotation()
        annotation.author = validated_data.get('author')
        annotation.body = validated_data.get('body')
        annotation.content_type = validated_data.get('content_type')
        annotation.object_id = validated_data.get('object_id')
        annotation.paragraph = validated_data.get('paragraph')
        
        annotation.privacy = validated_data.get('privacy')
        annotation.privacy_override = validated_data.get('privacy_override', False)

        #Get row from contentType which has content_type
        content_object = ContentType.objects.get_for_id(annotation.content_type.id)
        
        annotation.content_object = content_object.model_class().objects.get(id=annotation.object_id)
        
        print annotation.content_object          
        annotation.save()

        print validated_data.get('shared_with')
        for user in validated_data.get('shared_with'):
            sharing = AnnotationShareMap(annotation=annotation, 
                                                    user=user)
            sharing.save()
        
        return annotation
Example #4
0
def annotation(request, session_id):
    # GET => gather collections and render UI
    # POST => get annotation information and create new/update annotation.
    if not request.user.is_authenticated():
        return redirect('login')
    collections = Collection.objects.filter(creator=request.user).all()
    try:
        annotationsession = AnnotationSession.objects.get(pk=session_id)
        session_annotations = annotationsession.annotations.all().order_by(
            "datestamp")
    except AnnotationSession.DoesNotExist:
        return HttpResponse(status=404)

    if request.method == "GET":
        context = RequestContext(
            request, {
                'collections': collections,
                'annotationsession': annotationsession,
                'annotations': session_annotations
            })
        template = loader.get_template("annotations/annotate.html")
        return HttpResponse(template.render(context))
    elif request.method == "POST":
        # A new annotation or an old one?
        leftitem_id = request.POST.get("leftitem")
        rightitem_id = request.POST.get("rightitem")
        try:
            leftitem = Item.objects.get(pk=leftitem_id)
            rightitem = Item.objects.get(pk=rightitem_id)
        except Item.DoesNotExist:
            print("Hmmm it says these don't exist")
            return HttpResponse(status=404)

        leftitem_state = request.POST.get("leftitem_state")
        rightitem_state = request.POST.get("rightitem_state")
        annotationtext = request.POST.get("annotationtext", u"")

        try:
            previous = Annotation.objects.get(leftitem=leftitem,
                                              rightitem=rightitem,
                                              session=annotationsession)
            previous.annotation = annotationtext
            previous.leftitem_state = leftitem_state
            previous.rightitem_state = rightitem_state
            previous.save()
            return HttpResponse("{{'annotation_id':'{0}'}}".format(
                str(previous.id)),
                                mimetype="application/json")
        except Annotation.DoesNotExist:
            new_anno = Annotation(leftitem=leftitem,
                                  rightitem=rightitem,
                                  session=annotationsession,
                                  leftitem_state=leftitem_state,
                                  rightitem_state=rightitem_state,
                                  creator=request.user)
            new_anno.save()
            return HttpResponse("{{'annotation_id':'{0}'}}".format(
                str(new_anno.id)),
                                mimetype="application/json")
Example #5
0
 def create_annotation(self, body='', paragraph=None):
     annotation = Annotation()
     annotation.content_type=ContentType.objects.get(model='blogcontent', app_label="blogging")
     annotation.object_id= str(1)
     annotation.body=body
     annotation.paragraph=paragraph
     annotation.author= User.objects.get(id=1)
             
     annotation.save()
Example #6
0
def update(request):
    """
    Update the database with new annotations from the AudioAnnotator Flash interface.

    The Flash interface will output a string that looks like:

    "1,62637,119960,test\n2,137802,175384,test2\n"

    Each new line is a new annotation.  The first field is the
    annotation id, the second and third are the start and end times,
    in milliseconds, and the fourth is the label.
    """
    
    if request.method == "POST":
        annotations = request.POST.get('annotations', '')
        recording = Recording.objects.get(pk=request.POST.get('recording_id', ''))

        # Take the string of annotations from the AudioAnnotator and
        # parse it into annotations.
        for annotation in annotations.split("\n"):
            if (annotation == ''):
                break
            fields = annotation.split(",")
            ann_id = fields[0]
            ann_start_ms = int(fields[1])
            ann_end_ms = int(fields[2])
            ann_label = fields[3]
            # if (ann_label == None):
            #     Annotation.delete(ann_id)
            #     break

            if (ann_id == "0"):
                ann = Annotation(
                    start_time_ms = ann_start_ms,
                    end_time_ms = ann_end_ms,
                    label = ann_label,
                    recording = recording)
                ann.save()
            else:
                ann = Annotation.objects.get(pk=ann_id)
                ann.start_time_ms = ann_start_ms
                ann.end_time_ms = ann_end_ms
                ann.label = ann_label
                print ann
                ann.save()


    # Return back to the AudioAnnotator the latest collection of
    # annotations for this recording.
    annotations = Annotation.objects.all().filter(recording=r)
    output = ""
    for annotation in annotations:
        output += annotation.to_string + "\n"

    logging.info("***output=" + output)
    return HttpResponse(output)
Example #7
0
    def create_annotation(self, body='', paragraph=None):
        annotation = Annotation()
        annotation.content_type = ContentType.objects.get(model='blogcontent',
                                                          app_label="blogging")
        annotation.object_id = str(1)
        annotation.body = body
        annotation.paragraph = paragraph
        annotation.author = User.objects.get(id=1)

        annotation.save()
Example #8
0
def update(request):
    """
    Update the database with new annotations from the AudioAnnotator Flash interface.

    The Flash interface will output a string that looks like:

    "1,62637,119960,test\n2,137802,175384,test2\n"

    Each new line is a new annotation.  The first field is the
    annotation id, the second and third are the start and end times,
    in milliseconds, and the fourth is the label.
    """

    if request.method == "POST":
        annotations = request.POST.get('annotations', '')
        recording = Recording.objects.get(
            pk=request.POST.get('recording_id', ''))

        # Take the string of annotations from the AudioAnnotator and
        # parse it into annotations.
        for annotation in annotations.split("\n"):
            if (annotation == ''):
                break
            fields = annotation.split(",")
            ann_id = fields[0]
            ann_start_ms = int(fields[1])
            ann_end_ms = int(fields[2])
            ann_label = fields[3]
            # if (ann_label == None):
            #     Annotation.delete(ann_id)
            #     break

            if (ann_id == "0"):
                ann = Annotation(start_time_ms=ann_start_ms,
                                 end_time_ms=ann_end_ms,
                                 label=ann_label,
                                 recording=recording)
                ann.save()
            else:
                ann = Annotation.objects.get(pk=ann_id)
                ann.start_time_ms = ann_start_ms
                ann.end_time_ms = ann_end_ms
                ann.label = ann_label
                print ann
                ann.save()

    # Return back to the AudioAnnotator the latest collection of
    # annotations for this recording.
    annotations = Annotation.objects.all().filter(recording=r)
    output = ""
    for annotation in annotations:
        output += annotation.to_string + "\n"

    logging.info("***output=" + output)
    return HttpResponse(output)
Example #9
0
 def test_create_serializer_class(self):
     annotation = Annotation()
     annotation.content_type=ContentType.objects.get(model='blogcontent', app_label="blogging")
     annotation.object_id= str(1)
     annotation.body="This is a test annotation"
     annotation.paragraph="1"
     annotation.author= User.objects.get(id=1)
             
     annotation.save()
     obj = AnnotationSerializer(annotation)
     #print(obj.data)
     
     json = JSONRenderer().render(obj.data)
Example #10
0
    def test_create_serializer_class(self):
        annotation = Annotation()
        annotation.content_type = ContentType.objects.get(model='blogcontent',
                                                          app_label="blogging")
        annotation.object_id = str(1)
        annotation.body = "This is a test annotations"
        annotation.paragraph = "1"
        annotation.author = User.objects.get(id=1)

        annotation.save()
        obj = AnnotationSerializer(annotation)
        #print(obj.data)

        json = JSONRenderer().render(obj.data)
Example #11
0
def annotation(request, session_id):
  # GET => gather collections and render UI
  # POST => get annotation information and create new/update annotation.
  if not request.user.is_authenticated():
    return redirect('login')
  collections = Collection.objects.filter(creator=request.user).all()
  try:
    annotationsession = AnnotationSession.objects.get(pk=session_id)
    session_annotations = annotationsession.annotations.all().order_by("datestamp")
  except AnnotationSession.DoesNotExist:
    return HttpResponse(status=404)

  if request.method == "GET":
    context = RequestContext( request, {'collections': collections,
                                        'annotationsession': annotationsession,
                                        'annotations': session_annotations })
    template = loader.get_template("annotations/annotate.html")
    return HttpResponse(template.render(context))
  elif request.method == "POST":
    # A new annotation or an old one?
    leftitem_id = request.POST.get("leftitem")
    rightitem_id = request.POST.get("rightitem")
    try:
      leftitem = Item.objects.get(pk=leftitem_id)
      rightitem = Item.objects.get(pk=rightitem_id)
    except Item.DoesNotExist:
      print("Hmmm it says these don't exist")
      return HttpResponse(status=404)
      
    leftitem_state = request.POST.get("leftitem_state")
    rightitem_state = request.POST.get("rightitem_state")
    annotationtext = request.POST.get("annotationtext", u"")
    
    try:
      previous = Annotation.objects.get(leftitem = leftitem, rightitem = rightitem, session = annotationsession)
      previous.annotation = annotationtext
      previous.leftitem_state = leftitem_state
      previous.rightitem_state = rightitem_state
      previous.save()
      return HttpResponse("{{'annotation_id':'{0}'}}".format(str(previous.id)), mimetype="application/json")
    except Annotation.DoesNotExist:
      new_anno = Annotation(leftitem = leftitem, 
                          rightitem = rightitem, 
                          session = annotationsession,
                          leftitem_state = leftitem_state,
                          rightitem_state = rightitem_state,
                          creator = request.user)
      new_anno.save()
      return HttpResponse("{{'annotation_id':'{0}'}}".format(str(new_anno.id)), mimetype="application/json")
Example #12
0
    def post(self, request):
        result = json.loads(json.dumps(request.POST))
        annotation_object = Annotation()
        for _, _, q in self.qualities:
            vars(annotation_object)[q] = result[q]
        annotation_object.audio_file = self.get_context_data().get(
            'audio_file_name')
        annotation_object.user = self.request.user
        annotation_object.description = result.get('description')
        annotation_object.save()

        # How many have you annotated?
        user_annotations = Annotation.objects.filter(user=self.request.user)
        return render(request, 'annotation_submit.html',
                      {'count': len(user_annotations)})
Example #13
0
def import_archived_annotations(source_id, anndict, with_labels = True):

    source = Source.objects.get(pk = source_id) # let's fetch the relevant source.
    imported_user = get_imported_user() # the imported user.

    images = source.get_all_images().filter(metadata__name__in = list(anndict.keys())) # grab all image that have names in the .csv file.

    for image in images:

        # Start by remove annotations and points for this image
        for ann in Annotation.objects.filter(image=image):
            ann.delete()
        for point in Point.objects.filter(image=image):
            point.delete()
    
        # Next, set image metadata to IMPORTED.
        image.point_generation_method = PointGen.args_to_db_format(
                point_generation_type=PointGen.Types.IMPORTED,
                imported_number_of_points=len(anndict[image.metadata.name])
        )
        image.save()
        image.status.hasRandomPoints = True
        image.status.annotatedByHuman = with_labels
        image.status.save()
        image.after_annotation_area_change() # set the backend status correctly.

        # Iterate over this image's annotations and save them.
        for (point_num, (row, col, code)) in enumerate(anndict[image.metadata.name]):
            
            # Save the Point in the database.
            point = Point(row=row, column=col, point_number=point_num + 1, image=image)
            point.save()

            # and save the Annotation.
            if with_labels:
                label = Label.objects.filter(code=code)[0]
                annotation = Annotation(user=imported_user, point=point, image=image, label=label, source=source)
                annotation.save()
Example #14
0
def Classify(image_id):
    image = Image.objects.get(pk=image_id)

    # if annotated by Human, no need to re-classify
    if image.status.annotatedByHuman:
        print 'Classify: Image nr ' + str(image_id) + ' is annotated by the human operator, aborting'
        return

    # make sure that the previous step is complete
    if not image.status.featuresExtracted:
        print 'Classify: Features not extracted for image id {id}, can not proceed'.format(id = image_id)
        return

    # Get all robots for this source
    latestRobot = image.source.get_latest_robot()

    if latestRobot == None:
        print 'Classify: No robots exist for the source, {src}, of image id {id}. Aborting.'.format(src=image.source, id=image_id)
        return

    # Check if this image has been previously annotated by a robot.
    if (image.status.annotatedByRobot):
        # now, compare this version number to the latest_robot_annotator field for image.
        if (not (latestRobot.version > image.latest_robot_annotator.version)):
            print 'Image {id} is already annotated by the latest robot version, {ver}, for source, {src}'.format(id = image_id,  ver=latestRobot.version, src=image.source)
            return

    ####### EVERYTHING OK: START THE CLASSIFICATION ##########
    #update image status
    image.status.annotatedByRobot = True
    image.status.save()
    image.latest_robot_annotator = latestRobot
    image.save()

    print 'Start classify image id {id}'.format(id = image_id)
    #builds args for matlab script
    featureFile = os.path.join(FEATURES_DIR, str(image_id) + "_" + image.get_process_date_short_str() + ".dat")
    #get the source id for this file
    labelFile = os.path.join(CLASSIFY_DIR, str(image_id) + "_" + image.get_process_date_short_str() + ".txt")

    task_helpers.coralnet_classify(
        featureFile=featureFile,
        modelFile=latestRobot.path_to_model,
        labelFile=labelFile,
        logFile=CV_LOG,
        errorLogfile=CLASSIFY_ERROR_LOG,
    )

    #get algorithm user object
    user = get_robot_user()

    #open the labelFile and rowColFile to process labels
    rowColFile = os.path.join(FEATURES_DIR, str(image_id) + "_rowCol.txt")
    label_file = open(labelFile, 'r')
    row_file = open(rowColFile, 'r')

    for line in row_file: #words[0] is row, words[1] is column 
        words = line.split(',')

        #gets the label object based on the label id the algorithm specified
        label_id = label_file.readline()
        label_id.replace('\n', '')
        label = Label.objects.filter(id=label_id)

        #gets the point object(s) that have that row and column.
        #if there's more than one such point, add annotations to all of
        #these points the first time we see this row+col, and don't do
        #anything on subsequent times (filtering with annotation=None accomplishes this).
        points = Point.objects.filter(image=image, row=words[0], column=words[1], annotation=None)
        for point in points:
            #create the annotation object and save it
            Ann = Annotation.objects.filter(point=point, image=image)
            if ( len(Ann) > 0 and ( not is_robot_user(Ann[0].user) ) ): # if this is an imported or human, we don't want to overwrite it, so continue
                continue
            annotation = Annotation(image=image, label=label[0], point=point, user=user, robot_version=latestRobot, source=image.source)
            annotation.save()

    print 'Finished classification of image id {id}'.format(id = image_id)

    label_file.close()
    row_file.close()
Example #15
0
    def helper_classify_does_not_overwrite_manual_annotations(self, annotator_user):
        """
        Helper function for the tests that follow.
        """


        # Take at least (min number for training) images.
        # Preprocess, feature extract, and add human annotations to
        # the features.
        for img in Image.objects.filter(source__pk=self.source_id):
            preprocess_image(img.id)
            make_features(img.id)
            self.add_human_annotations(img.id)
            add_labels_to_features(img.id)

        # Create a robot.
        result = train_robot(self.source_id)
        self.assertTrue(result == 1)

        # Upload a new image.
        img_id = self.upload_image('006_2012-06-28_color-grid-006.png')[0]

        # Preprocess and feature extract.
        preprocess_image(img_id)
        make_features(img_id)

        # Add annotations.
        source = Source.objects.get(pk=self.source_id)
        img = Image.objects.get(pk=img_id)
        points = Point.objects.filter(image=img)
        labels = source.labelset.labels.all()

        # For odd-numbered points, make an annotation by picking a
        # label randomly from the source's labelset.
        # Leave the even-numbered points alone.
        # (Assumption: the test source has at least 2 points per image)
        for pt in points:

            if pt.point_number % 2 == 0:
                continue

            label = random.choice(labels)
            anno = Annotation(
                point=pt,
                image=img,
                source=source,
                user=annotator_user,
                label=label,
            )
            anno.save()

        img.status.save()


        # Get those annotations (again, only odd-numbered points).
        num_points = Point.objects.filter(image__pk=img_id).count()
        manual_annotations = dict()

        for point_num in range(1, num_points+1, 2):

            label_id = Annotation.objects.get(image__pk=img_id, point__point_number=point_num).label.id
            manual_annotations[point_num] = label_id


        # Try to Classify.
        result = classify_image(img_id)

        # Shouldn't throw exception.
        self.assertTrue(result == 1)
        self.assertEqual(Image.objects.get(pk=img_id).status.annotatedByRobot, True)


        # Check the Annotations.
        for point_num in range(1, num_points+1):

            anno = Annotation.objects.get(image__pk=img_id, point__point_number=point_num)
            label_id = anno.label.id

            if point_num % 2 == 0:
                # Even; should be robot
                self.assertEqual(anno.user.id, get_robot_user().id)
            else:
                # Odd; should be manual (and same as before)
                self.assertEqual(label_id, manual_annotations[point_num])
                self.assertEqual(anno.user.id, annotator_user.id)

            if settings.UNIT_TEST_VERBOSITY >= 1:
                print "Point {num} | {username} | {label_id}".format(
                    num=point_num,
                    username=anno.user.username,
                    label_id=label_id,
                )
Example #16
0
def image_upload_process(imageFiles, imageOptionsForm, annotationOptionsForm, source, currentUser, annoFile):
    """
    Helper method for the image upload view and the image+annotation
    import view.
    """

    uploadedImages = []
    duplicates = 0
    imagesUploaded = 0
    annotationsImported = 0
    importedUser = get_imported_user()

    dupeOption = imageOptionsForm.cleaned_data['skip_or_replace_duplicates']

    annotationData = None
    if annoFile:
        try:
            annotationData = annotations_file_to_python(annoFile, source)
        except FileContentError as errorDetail:
            return dict(error=True,
                message='Error reading labels file %s. %s' % (annoFile.name, errorDetail),
            )

    for imageFile in imageFiles:

        filename = imageFile.name
        metadataDict = None
        metadata = Metadata(height_in_cm=source.image_height_in_cm)

        if imageOptionsForm.cleaned_data['specify_metadata'] == 'filenames':

            try:
                metadataDict = filename_to_metadata(filename, source)

            # Filename parse error.
            # TODO: check for validity of the file type and contents, too.
            except (ValueError, StopIteration):
                return dict(error=True,
                    message='Upload failed - Error when parsing the filename %s for metadata.' % filename,
                )

            # Detect duplicate images and handle them
            dupe = find_dupe_image(source, **metadataDict)
            if dupe:
                duplicates += 1
                if dupeOption == 'skip':
                    # Skip uploading this file.
                    continue
                elif dupeOption == 'replace':
                    # Proceed uploading this file, and delete the dupe.
                    dupe.delete()

            # Set the metadata
            valueDict = get_location_value_objs(source, metadataDict['values'], createNewValues=True)
            photoDate = datetime.date(year = int(metadataDict['year']),
                             month = int(metadataDict['month']),
                             day = int(metadataDict['day']))

            metadata.name = metadataDict['name']
            metadata.photo_date = photoDate
            for key, value in valueDict.iteritems():
                setattr(metadata, key, value)

        else:
            metadata.name = filename

        # Image + annotation import form
        # Assumes we got the images' metadata (from filenames or otherwise)
        if annotationData:

            pointsOnlyOption = annotationOptionsForm.cleaned_data['points_only']

            # Use the location values and the year to build a string identifier for the image, such as:
            # Shore1;Reef5;...;2008
            imageIdentifier = get_image_identifier(metadataDict['values'], metadataDict['year'])

            # Use the identifier as the index into the annotation file's data.
            if not annotationData.has_key(imageIdentifier):
                return dict(error=True,
                    message='%s seems to have no annotations for the image file %s, which has the following keys:\n%s' % (
                        annoFile.name, imageFile.name, imageIdentifier.replace(';',' '))
                )

            imageAnnotations = annotationData[imageIdentifier]

            status = ImageStatus()
            status.save()

            metadata.annotation_area = AnnotationAreaUtils.IMPORTED_STR
            metadata.save()

            img = Image(original_file=imageFile,
                    uploaded_by=currentUser,
                    point_generation_method=PointGen.args_to_db_format(
                        point_generation_type=PointGen.Types.IMPORTED,
                        imported_number_of_points=len(imageAnnotations)
                    ),
                    metadata=metadata,
                    source=source,
                    status=status,
                  )
            img.save()

            # Iterate over this image's annotations and save them.
            pointNum = 1
            for anno in imageAnnotations:

                # Save the Point in the database.
                point = Point(row=anno['row'], column=anno['col'], point_number=pointNum, image=img)
                point.save()

                if not pointsOnlyOption:
                    label = Label.objects.filter(code=anno['label'])[0]

                    # Save the Annotation in the database, marking the annotations as imported.
                    annotation = Annotation(user=importedUser,
                                            point=point, image=img, label=label, source=source)
                    annotation.save()

                    annotationsImported += 1

                pointNum += 1

            img.status.hasRandomPoints = True
            if not pointsOnlyOption:
                img.status.annotatedByHuman = True
            img.status.save()

        # Image upload form, no annotations
        else:
            status = ImageStatus()
            status.save()

            metadata.annotation_area = source.image_annotation_area
            metadata.save()

            # Save the image into the DB
            img = Image(original_file=imageFile,
                    uploaded_by=currentUser,
                    point_generation_method=source.default_point_generation_method,
                    metadata=metadata,
                    source=source,
                    status=status,
                  )
            img.save()

            # Generate and save points
            generate_points(img)

        # Up to 5 uploaded images will be shown
        # upon successful upload.
        # Prepend to list, so most recent image comes first
        uploadedImages.insert(0, img)
        if len(uploadedImages) > 5:
            uploadedImages = uploadedImages[:5]

        imagesUploaded += 1

    # Construct success message.
    success_message = image_upload_success_message(
        num_images_uploaded=imagesUploaded,
        num_dupes=duplicates,
        dupe_option=dupeOption,
        num_annotations=annotationsImported,
    )

    return dict(error=False,
        uploadedImages=uploadedImages,
        message=success_message,
    )
Example #17
0
def classify_image(image_id):
    image = Image.objects.get(pk=image_id)

    # if annotated by Human, or if the previous step is not complete
    if image.status.annotatedByHuman or not image.status.featuresExtracted:
        return 1

    # Get last robot for this source
    latestRobot = image.source.get_latest_robot()

    if latestRobot == None:
        return 1

    # Check if this image has been previously annotated by a robot.
    if image.status.annotatedByRobot:
        # now, compare this version number to the latest_robot_annotator field for image.
        if (not (latestRobot.version > image.latest_robot_annotator.version)):
            return 1

    ####### EVERYTHING OK: START THE CLASSIFICATION ##########
    logging.info('Classifying image{id} from source{sid}: {sname}'.format(id = image_id, sid = image.source_id, sname = image.source.name))
    
    #builds args for matlab script
    featureFile = os.path.join(FEATURES_DIR, str(image_id) + "_" + image.get_process_date_short_str() + ".dat")
    labelFile = os.path.join(CLASSIFY_DIR, str(image_id) + "_" + image.get_process_date_short_str() + ".txt")

    task_helpers.coralnet_classify(
        featureFile=featureFile,
        modelFile=latestRobot.path_to_model,
        labelFile=labelFile,
        logFile=CV_LOG,
        errorLogfile=CLASSIFY_ERROR_LOG,
    )

    if os.path.isfile(CLASSIFY_ERROR_LOG):
        logging.info('ERROR classifying image{id} from source{sid}: {sname}'.format(id = image_id, sid = image.source_id, sname = image.source.name))
        mail_admins('CoralNet Backend Error', 'in Classify')
        return 0
    else:
        #update image status
        image.status.annotatedByRobot = True
        image.status.save()
        image.latest_robot_annotator = latestRobot
        image.save()

    ####### IMPORT CLASSIFICATION RESULT TO DATABASE ##########
    user = get_robot_user()

    # Get the label probabilities that we just generated
    label_probabilities = task_utils.get_label_probabilities_for_image(image_id)

    if len(label_probabilities) == 0:
        mail_admins('Classify error', 'Classification output for image{id} from source{sid}: {sname} was empty.'.format(id = image_id, sid = image.source_id, sname = image.source.name))

    # Go through each point and update/create the annotation as appropriate
    for point_number, probs in label_probabilities.iteritems():
        pt = Point.objects.get(image=image, point_number=point_number)

        probs_descending_order = sorted(probs, key=operator.itemgetter('score'), reverse=True)
        top_prob_label_code = probs_descending_order[0]['label']
        label = Label.objects.get(code=top_prob_label_code)

        # If there's an existing annotation for this point, get it.
        # Otherwise, create a new annotation.
        #
        # (Assumption: there's at most 1 Annotation per Point, never multiple.
        # If there are multiple, we'll get a MultipleObjectsReturned exception.)
        try:
            anno = Annotation.objects.get(image=image, point=pt)

        except Annotation.DoesNotExist:
            # No existing annotation. Create a new one.
            new_anno = Annotation(
                image=image, label=label, point=pt,
                user=user, robot_version=latestRobot, source=image.source
            )
            new_anno.save()

        else:
            # Got an existing annotation.
            if is_robot_user(anno.user):
                # It's an existing robot annotation. Update it as necessary.
                if anno.label.id != label.id:
                    anno.label = label
                    anno.robot_version = latestRobot
                    anno.save()

            # Else, it's an existing confirmed annotation, and we don't want
            # to overwrite it. So do nothing in this case.

    logging.info('Classified {npts} points in image{id} from source{sid}: {sname}'.format(npts = len(label_probabilities), id = image_id, sid = image.source_id, sname = image.source.name))
    return 1
Example #18
0
def ajax_save_annotations(request, annotationForm):
    """
    Called via Ajax from the annotation tool form, if the user clicked
    the "Save Annotations" button.

    Takes: the annotation form field names and values, serialized with jQuery's serializeArray()
    Does: saves the annotations in the database
    Returns: false if successful, an error string if there was a problem
    """

    #TODO: just use request.POST instead of the annotationForm parameter
    formDict = dict([ (d['name'], d['value']) for d in annotationForm ])

    image = Image.objects.get(pk=formDict['image_id'])
    user = User.objects.get(pk=formDict['user_id'])
    source = image.source
    sourceLabels = source.labelset.labels.all()

    # Sanity checks
    if user != request.user:
        return simplejson.dumps(dict(error="User id error"))
    if not user.has_perm(Source.PermTypes.EDIT.code, image.source):
        return simplejson.dumps(dict(error="Image id error"))

    # Get stuff from the DB in advance, should save time
    pointsList = list(Point.objects.filter(image=image))
    points = dict([ (p.point_number, p) for p in pointsList ])

    annotationsList = list(Annotation.objects.filter(image=image, source=source))
    annotations = dict([ (a.point_id, a) for a in annotationsList ])

    for name, value in formDict.iteritems():

        if name.startswith('label_'):

            # Get this annotation's point
            pointNum = name[len('label_'):]   # The part after 'label_'
            point = points[int(pointNum)]

            # Does the form field have a non-human-confirmed robot annotation?
            isFormRobotAnnotation = simplejson.loads(formDict['robot_' + pointNum])

            # Get the label that the form field value refers to.
            # Anticipate errors, even if we plan to check input with JS.
            labelCode = value
            if labelCode == '':
                label = None
            else:
                labels = Label.objects.filter(code=labelCode)
                if len(labels) == 0:
                    return simplejson.dumps(dict(error="No label with code %s." % labelCode))

                label = labels[0]
                if label not in sourceLabels:
                    return simplejson.dumps(dict(error="The labelset has no label with code %s." % labelCode))

            # An annotation of this point number exists in the database
            if annotations.has_key(point.id):
                anno = annotations[point.id]
                # Label field is now blank.
                # We're not allowing label deletions, so don't do anything in this case.
                if label is None:
                    pass
                # Label was robot annotated, and then the human user confirmed or changed it
                elif is_robot_user(anno.user) and not isFormRobotAnnotation:
                    anno.label = label
                    anno.user = user
                    anno.save()
                # Label was otherwise changed
                elif label != anno.label:
                    anno.label = label
                    anno.user = user
                    anno.save()

            # No annotation of this point number in the database yet
            else:
                if label is not None:
                    newAnno = Annotation(point=point, user=user, image=image, source=source, label=label)
                    newAnno.save()

    # Are all points human annotated?
    all_done = image_annotation_all_done(image)

    # Update image status, if needed
    if image.status.annotatedByHuman:
        image.after_completed_annotations_change()
    if image.status.annotatedByHuman != all_done:
        image.status.annotatedByHuman = all_done
        image.status.save()

    if all_done:
        # Need simplejson.dumps() to convert the Python True to a JS true
        return simplejson.dumps(dict(all_done=True))
    else:
        return dict()
Example #19
0
def image_upload_process(imageFile, imageOptionsForm,
                         annotation_dict_id,
                         csv_dict_id, metadata_import_form_class,
                         annotation_options_form,
                         source, currentUser):

    is_uploading_points_or_annotations = annotation_options_form.cleaned_data['is_uploading_points_or_annotations']

    filename = imageFile.name
    metadata_dict = None
    metadata_obj = Metadata(height_in_cm=source.image_height_in_cm)

    if imageOptionsForm.cleaned_data['specify_metadata'] == 'filenames':

        filename_check_result = check_image_filename(filename, source)
        filename_status = filename_check_result['status']

        if filename_status == 'error':
            # This case should never happen if the pre-upload
            # status checking is doing its job, but just in case...
            return dict(
                status=filename_status,
                message=u"{m}".format(m=filename_check_result['message']),
                link=None,
                title=None,
            )

        # Set the metadata
        metadata_dict = filename_check_result['metadata_dict']

        value_dict = get_location_value_objs(source, metadata_dict['values'], createNewValues=True)
        photo_date = datetime.date(
            year = int(metadata_dict['year']),
            month = int(metadata_dict['month']),
            day = int(metadata_dict['day'])
        )

        metadata_obj.name = metadata_dict['name']
        metadata_obj.photo_date = photo_date
        for key, value in value_dict.iteritems():
            setattr(metadata_obj, key, value)

    elif imageOptionsForm.cleaned_data['specify_metadata'] == 'csv':

        if not csv_dict_id:
            return dict(
                status='error',
                message=u"{m}".format(m="CSV file was not uploaded."),
                link=None,
                title=None,
            )

        csv_dict_filename = os.path.join(
            settings.SHELVED_ANNOTATIONS_DIR,
            'csv_source{source_id}_{dict_id}.db'.format(
                source_id=source.id,
                dict_id=csv_dict_id,
            ),
        )

        # Corner case: the specified shelved annotation file doesn't exist.
        # Perhaps the file was created a while ago and has been pruned since,
        # or perhaps there is a bug.
        if not os.path.isfile(csv_dict_filename):
            return dict(
                status='error',
                message="CSV file could not be found - if you provided the .csv file a while ago, maybe it just timed out. Please retry the upload.",
                link=None,
                title=None,
            )

        csv_dict = shelve.open(csv_dict_filename)

        #index into the csv_dict with the filename. the str() is to handle
        #the case where the filename is a unicode object instead of a str;
        #unicode objects can't index into dicts.
        filename_str = str(filename)

        if filename_str in csv_dict:

            # There is CSV metadata for this file.

            metadata_dict = csv_dict[str(filename)]
            csv_dict.close()

            # The reason this uses metadata_import_form_class instead of
            # importing MetadataImportForm is that I'm too lazy to deal with the
            # circular-import implications of the latter solution right now.
            # -Stephen
            metadata_import_form = metadata_import_form_class(
                source.id, True, metadata_dict,
            )

            if not metadata_import_form.is_valid():
                return dict(
                    status='error',
                    message="Unknown error with the CSV metadata.",
                    link=None,
                    title=None,
                )

            fields = ['photo_date', 'value1', 'value2', 'value3', 'value4',
                      'value5', 'height_in_cm', 'latitude', 'longitude',
                      'depth', 'camera', 'photographer', 'water_quality',
                      'strobes', 'framing', 'balance']

            for field in fields:

                if not field in metadata_import_form.fields:
                    # A location value field that's not in this form
                    continue

                value = metadata_import_form.cleaned_data[field]
                # Check for a non-empty value; don't want empty values to
                # override default values that we've already set on the
                # metadata_obj
                if value:
                    setattr(metadata_obj, field, value)

        else:

            # No CSV metadata for this file.

            csv_dict.close()

        metadata_obj.name = filename

    else:

        # Not specifying any metadata at upload time.
        metadata_obj.name = filename


    image_annotations = None
    has_points_or_annotations = False

    if is_uploading_points_or_annotations:

        # Corner case: somehow, we're uploading with points+annotations and without
        # a checked annotation file specified.  This probably indicates a bug.
        if not annotation_dict_id:
            return dict(
                status='error',
                message=u"{m}".format(m=str_consts.UPLOAD_ANNOTATIONS_ON_AND_NO_ANNOTATION_DICT_ERROR_STR),
                link=None,
                title=None,
            )

        annotation_dict_filename = os.path.join(
            settings.SHELVED_ANNOTATIONS_DIR,
            'source{source_id}_{dict_id}'.format(
                source_id=source.id,
                dict_id=annotation_dict_id,
            ),
        )

        # Corner case: the specified shelved annotation file doesn't exist.
        # Perhaps the file was created a while ago and has been pruned since,
        # or perhaps there is a bug.
        if not os.path.isfile(annotation_dict_filename):
            return dict(
                status='error',
                message="Annotations could not be found - if you provided the .txt file a while ago, maybe it just timed out. Please retry the upload.",
                link=None,
                title=None,
            )


        # Use the location values and the year to build a string identifier for the image, such as:
        # Shore1;Reef5;...;2008
        # Convert to a string (instead of a unicode string) for the shelve key lookup.
        image_identifier = str(get_image_identifier(metadata_dict['values'], metadata_dict['year']))

        annotation_dict = shelve.open(annotation_dict_filename)

        if annotation_dict.has_key(image_identifier):
            image_annotations = annotation_dict[image_identifier]
            has_points_or_annotations = True
        annotation_dict.close()

    if has_points_or_annotations:
        # Image upload with points/annotations

        is_uploading_annotations_not_just_points = annotation_options_form.cleaned_data['is_uploading_annotations_not_just_points']
        imported_user = get_imported_user()

        status = ImageStatus()
        status.save()

        metadata_obj.annotation_area = AnnotationAreaUtils.IMPORTED_STR
        metadata_obj.save()

        img = Image(
            original_file=imageFile,
            uploaded_by=currentUser,
            point_generation_method=PointGen.args_to_db_format(
                point_generation_type=PointGen.Types.IMPORTED,
                imported_number_of_points=len(image_annotations)
            ),
            metadata=metadata_obj,
            source=source,
            status=status,
        )
        img.save()

        # Iterate over this image's annotations and save them.
        point_num = 0
        for anno in image_annotations:

            # Save the Point in the database.
            point_num += 1
            point = Point(row=anno['row'], column=anno['col'], point_number=point_num, image=img)
            point.save()

            if is_uploading_annotations_not_just_points:
                label = Label.objects.filter(code=anno['label'])[0]

                # Save the Annotation in the database, marking the annotations as imported.
                annotation = Annotation(user=imported_user,
                    point=point, image=img, label=label, source=source)
                annotation.save()

        img.status.hasRandomPoints = True
        if is_uploading_annotations_not_just_points:
            img.status.annotatedByHuman = True
        img.status.save()
    else:
        # Image upload, no points/annotations
        image_status = ImageStatus()
        image_status.save()

        metadata_obj.annotation_area = source.image_annotation_area
        metadata_obj.save()

        # Save the image into the DB
        img = Image(original_file=imageFile,
            uploaded_by=currentUser,
            point_generation_method=source.default_point_generation_method,
            metadata=metadata_obj,
            source=source,
            status=image_status,
        )
        img.save()

        # Generate and save points
        generate_points(img)

    success_message = "Uploaded"

    return dict(
        status='ok',
        message=success_message,
        link=reverse('image_detail', args=[img.id]),
        title=img.get_image_element_title(),
        image_id=img.id,
    )