Example #1
0
def feedback():
    """Feedback Service to provide user input on which false predictions this model provided."""
    try:
        content = request.json
        logging.info("id: {} ".format(content["lad_id"]))
        logging.info("anomaly: {} ".format(content["is_anomaly"]))
        logging.info("notes: {} ".format(content["notes"]))

        if not content["lad_id"] or not content["is_anomaly"]:
            raise Exception("This service requires that you provide the id" +
                            ", anomaly=True|False and notes are optional ")

        fs = FactStore()

        # Note id is the prediction id that is found in the email.
        if (fs.write_feedback(predict_id=content["lad_id"],
                              notes=content["notes"],
                              anomaly_status=bool(content["is_anomaly"])) is
                False):
            raise Exception("Predict ID must be unique. This anomaly" +
                            " feedback  has been reported before")
    except Exception as e:
        logging.info(e)
        result = {"feedback_service": "failure", "error_msg": "{0}".format(e)}
        return make_response(jsonify(result), 403)
    else:
        result = {"feedback_service": "success"}
        return make_response(jsonify(result), 200)

    return ""
Example #2
0
def false_anomaly():
    """Tag false anomalies in database."""
    content = request.get_json()
    fs = FactStore()
    id = content["predict_id"]
    # Tracking event in fact-store
    res = fs.write_event(content["predict_id"], content["message"],
                         content["score"], content["anomaly_status"])
    # Returning status if this anomaly is real anomaly_status== false
    return jsonify({"false_anomaly": res})
Example #3
0
def feedback():
    """Feedback Service to provide user input on which false predictions this model provided."""
    try:

        content = request.json
        # When deploying fact_store per customer you should set env var
        customer_id = os.getenv("CUSTOMER_ID")
        logging.info("id: {} ".format(content["lad_id"]))
        logging.info("anomaly: {} ".format(content["is_anomaly"]))
        logging.info("message: {} ".format(content["message"]))
        logging.info("customer_id: {} ".format(customer_id))

        if not content["lad_id"] or not content["is_anomaly"]:
            raise Exception("This service requires that you provide the id" +
                            ", anomaly=True|False and notes are optional ")

        fs = FactStore()
        # Record feedback
        HUMAN_FEEDBACK_COUNT.labels(
            customer_id=customer_id,
            anomaly_status=content["is_anomaly"]).inc()

        # Note id is the prediction id that is found in the email.
        if (fs.write_feedback(predict_id=content["lad_id"],
                              message=content["message"],
                              anomaly_status=bool(content["is_anomaly"]),
                              customer_id=customer_id) is False):
            raise Exception("Predict ID must be unique. This anomaly" +
                            " feedback  has been reported before")
    except Exception as e:
        logging.info(e)
        HUMAN_FEEDBACK_ERROR_COUNT.labels(
            err_msg="failure to write to db in factstore").inc()
        result = {"feedback_service": "failure", "error_msg": "{0}".format(e)}
        return make_response(jsonify(result), 403)
    else:
        result = {"feedback_service": "success"}
        return make_response(jsonify(result), 200)

    return ""
def test_feedback_inserted():
    """Test inserting events into the fact_store."""
    fact_store = FactStore(True)
    fact_store.session.query(FeedbackModel).delete()
    fact_store.write_feedback(
        predict_id="a2b35c5b-016d-4e2c-8ec5-87d1b962b2f8",
        notes="222JSJSJJS",
        anomaly_status=True)
    fact_store.write_feedback(
        predict_id="18bd090d-ae27-4b19-a0db-ed5f589b4e2e",
        notes="SSJJSJS",
        anomaly_status=True)
    fact_store.write_feedback(
        predict_id="74a6b1bd-efea-4e7b-87a9-8f7330885160",
        notes="AJJSJS",
        anomaly_status=False)
    items = fact_store.readall_feedback()
    assert len(items) is 3
def test_events_inserted():
    """Test inserting feedback into the fact_store."""
    fact_store = FactStore(True)
    fact_store.session.query(EventModel).delete()
    fact_store.write_event(predict_id="a2b35c5b-016d-4e2c-8ec5-87d1b962b2f8",
                           message="kssksjs",
                           score=3.1,
                           anomaly_status=True)
    fact_store.write_event(predict_id="18bd090d-ae27-4b19-a0db-ed5f589b4e2e",
                           message="JSJSJS",
                           score=2.2,
                           anomaly_status=False)
    fact_store.write_event(predict_id="74a6b1bd-efea-4e7b-87a9-8f7330885160",
                           message="sjsjsjsj",
                           score=8.3,
                           anomaly_status=True)
    items = fact_store.session.query(EventModel).all()
    assert len(items) is 3
Example #6
0
def false_positive():
    """Service to provide list of false anomalies to be relabeled during ml training run."""
    fs = FactStore()
    df = fs.readall_false_positive()
    return jsonify({"feedback": df})