def main(): # get specifications for run to read model_ids = ['811','811','911','911'] assim_type = '_p25adapted' ens_size = 500 # get pixels, ids and number of iterations to read cbf_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/cbf'+assim_type+'/' + model_ids[0] + '/' pixels = ['3809','3524','2224','4170','1945','3813','4054','3264','1271','3457'] mcmc_ids = ['119','3','3','119'] n_iters = ['40000000','1000000','1000000','40000000'] nbe_mae, lai_mae, abgb_mae, gpp_mae = [], [], [], [] # run through pixels for pixel in pixels: # get that pixel's outputs for each MCMCID nbe_pred, lai_pred, abgb_pred, gpp_pred = [], [], [], [] for model_id, mcmc_id, n_iter in zip(model_ids, mcmc_ids, n_iters): # set directories cur_dir = os.getcwd() + '/' cbf_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/cbf'+assim_type+'/' + model_id + '/' cbr_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/cbr'+assim_type+'/' + model_id + '/' output_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/output'+assim_type+'/' + model_id + '/' plot_dir = '../../../../../../scratch/users/cfamigli/cardamom/plots/' parnames = autil.get_parnames('../../misc/', model_id) # read cbf file for that pixel cbf_pixel = rwb.read_cbf_file(glob.glob(cbf_dir + '*_' + pixel+'.cbf')[0]) # read obs and obs unc for that pixel nbe_obs, lai_obs, abgb_obs, sif_obs = cbf_pixel['OBS']['NBE'], cbf_pixel['OBS']['LAI'], cbf_pixel['OBS']['ABGB'], cbf_pixel['OBS']['GPP'] nbe_an_unc, nbe_seas_unc, lai_unc, abgb_unc = cbf_pixel['OBSUNC']['NBE']['annual_unc'], cbf_pixel['OBSUNC']['NBE']['seasonal_unc'], cbf_pixel['OTHER_OBS']['MLAI']['unc'], cbf_pixel['OBSUNC']['ABGB']['unc'] conv_chains_pkl = read_pickle(glob.glob(cbr_dir + model_id + assim_type + '*_MCMC'+mcmc_id + '_'+n_iter+'_best_subset.pkl')[0]) conv_chains_pkl.columns = ['pixel','bestchains','conv']# if model_id!='911' else ['pixel','bestchains'] #rename columns for easier access # grab cbrs corresponding to that pixel, MCMCID and number of iterations files = glob.glob(cbr_dir + '*MCMC'+mcmc_id+'_' + n_iter + '_'+ pixel+'*.cbr') files.sort() best_chains = conv_chains_pkl.loc[conv_chains_pkl['pixel']==pixel]['bestchains'].values[0][1:] # run through cbrs cbr_chain_list = [] for chain in best_chains: print(chain) # read cbr for one file and transform Bday, Fday file = [i for i in files if pixel+'_'+chain+'.cbr' in i][0] cbr_chain = autil.modulus_Bday_Fday(rwb.read_cbr_file(file, {'nopars': len(parnames)}), parnames) print(cbr_chain.shape) # read forward run for that cbr flux_chain = rwb.readbinarymat(output_dir + 'fluxfile_' + file.partition(cbr_dir)[-1][:-3]+'bin', [cbf_pixel['nodays'], autil.get_nofluxes_nopools_lma(model_id)[0]]) pool_chain = rwb.readbinarymat(output_dir + 'poolfile_' + file.partition(cbr_dir)[-1][:-3]+'bin', [cbf_pixel['nodays']+1, autil.get_nofluxes_nopools_lma(model_id)[1]]) # add chain to list for GR calculation if np.shape(cbr_chain)[0]==ens_size: cbr_chain_list.append(cbr_chain) # add forward run chain to aggregated matrix flux_pixel = np.copy(flux_chain) if best_chains.index(chain)==0 else np.concatenate((flux_pixel, flux_chain), axis=0) pool_pixel = np.copy(pool_chain) if best_chains.index(chain)==0 else np.concatenate((pool_pixel, pool_chain), axis=0) # compute gelman rubin if len(cbr_chain_list)>1: gr = autil.gelman_rubin(cbr_chain_list) print('%i of %i parameters converged' % (sum(gr<1.2), len(parnames))) else: gr = np.nan cbr_pixel = np.vstack(cbr_chain_list) print(pool_pixel.shape) print(cbr_pixel.shape) # nbe, lai, and abgb predictions at pixel # list with elements corresponding to MCMCIDs considered (e.g. first element is MCMCID 119) nbe_pred.append(autil.get_output('NBE', model_id, flux_pixel, pool_pixel, cbr_pixel, autil.get_nofluxes_nopools_lma(model_id)[2])) lai_pred.append(autil.get_output('LAI', model_id, flux_pixel, pool_pixel, cbr_pixel, autil.get_nofluxes_nopools_lma(model_id)[2])[:,:-1]) abgb_pred.append(autil.get_output('ABGB', model_id, flux_pixel, pool_pixel, cbr_pixel, autil.get_nofluxes_nopools_lma(model_id)[2])[:,:-1]) gpp_pred.append(autil.get_output('GPP', model_id, flux_pixel, pool_pixel, cbr_pixel, autil.get_nofluxes_nopools_lma(model_id)[2])) # plot time series lbls = [model_id+'_MCMC'+mcmc_id for model_id, mcmc_id in zip(model_ids, mcmc_ids)] plot_output_ts(cbf_pixel, nbe_pred, nbe_obs, nbe_an_unc, lbls=lbls, var='NBE', savepath=cur_dir+plot_dir+'demcmc_mcmc/', title='all_models'+'_NBE_'+pixel+'.png') plot_output_ts(cbf_pixel, lai_pred, lai_obs, lai_unc, lbls=lbls, var='LAI', savepath=cur_dir+plot_dir+'demcmc_mcmc/', title='all_models'+'_LAI_'+pixel+'.png') plot_output_ts(cbf_pixel, gpp_pred, sif_obs, 0, lbls=lbls, var='GPP', savepath=cur_dir+plot_dir+'demcmc_mcmc/', title='all_models'+'_GPP_'+pixel+'.png') # plot box plots plot_dist_compare(nbe_pred, nbe_obs, [nbe_an_unc, nbe_seas_unc], lbls=lbls, var='NBE', savepath=cur_dir+plot_dir+'demcmc_mcmc/', title='all_models'+'_NBE_'+pixel+'_dist_') plot_dist_compare(lai_pred, lai_obs, lai_unc, lbls=lbls, var='LAI', savepath=cur_dir+plot_dir+'demcmc_mcmc/', title='all_models'+'_LAI_'+pixel+'_dist_') plot_dist_compare(abgb_pred, abgb_obs, abgb_unc, lbls=lbls, var='ABGB', savepath=cur_dir+plot_dir+'demcmc_mcmc/', title='all_models'+'_ABGB_'+pixel+'_dist_') # plot obs vs median comparison nbe_mae.append([mae_real_numbers_only(f, nbe_obs)[0] for f in nbe_pred]) lai_mae.append([mae_real_numbers_only(f, lai_obs)[0] for f in lai_pred]) abgb_mae.append([mae_real_numbers_only(f, abgb_obs)[0] for f in abgb_pred]) print(rank_mae(nbe_mae, lbls)) print(rank_mae(lai_mae, lbls)) print(rank_mae(abgb_mae, lbls)) plot_maes(nbe_mae, pixels, savepath=cur_dir+plot_dir+'demcmc_mcmc/', title='all_models_NBE_mae') plot_maes(lai_mae, pixels, savepath=cur_dir+plot_dir+'demcmc_mcmc/', title='all_models_LAI_mae') plot_maes(abgb_mae, pixels, savepath=cur_dir+plot_dir+'demcmc_mcmc/', title='all_models_ABGB_mae') return
def main(): cur_dir = os.getcwd() + '/' plot_dir = '../../../../../../scratch/users/cfamigli/cardamom/plots/' os.chdir(plot_dir + 'dists/') # get list of model ids models_full = list(set([el.split('_')[0] for el in glob.glob('*.png')])) # remove 101, temporary until 102-->101 models_full.remove('102') os.chdir(cur_dir) # set lists of variables and pixels vrs = [ 'NBE', 'cumNBE', 'LAI', 'GPP', 'Reco', 'Rauto', 'Rhet', 'lit', 'root', 'som', 'wood' ] pixels = [ '3809', '3524', '2224', '4170', '1945', '3813', '4054', '3264', '1271', '3457' ] # set MCMC ID mcmc_id = sys.argv[1] n_iter = sys.argv[2] assim_type = '_longadapted' nmodels_leave_out = sys.argv[3] models = random.sample(models_full, len(models_full) - int(nmodels_leave_out)) print(models) # dataframe will hold model structural uncertainty (Ms) and model parametric uncertainty (Mp) for each pixel-var combination # n is number of models that make up the suite partitioning = DataFrame(columns={'Ms', 'Mp', 'n'}) df_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/processed_df/' for var in vrs: print('Variable: ' + var) Mp_pixels = np.zeros( len(pixels)) * np.nan # list of Mp for each pixel, for mapping for pixel in pixels: print('Pixel: ' + pixel) nsteps = 228 if assim_type == '_longadapted' else 240 meds, ub, lb = np.zeros((len(models), nsteps)) * np.nan, np.zeros( (len(models), nsteps) ) * np.nan, np.zeros( (len(models), nsteps) ) * np.nan # medians, upper bounds, lower bounds of prediction through time Mp, n = 0, 0 for model in models: print(model) cbf_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/cbf' + assim_type + '/' + model + '/' cbr_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/cbr' + assim_type + '/' + model + '/' output_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/output' + assim_type + '/' + model + '/' parnames = autil.get_parnames(cur_dir + '../../misc/', model) os.chdir(cur_dir + cbr_dir) #files = set(glob.glob('*.cbr')) - set(glob.glob('*MCMC'+mcmc_id+'*.cbr')) #files = glob.glob('*MCMC'+mcmc_id+'*.cbr') files = set( glob.glob('*MCMC' + mcmc_id + '_' + n_iter + '_*.cbr')) pixel_chains = autil.find_all_chains( files, pixel ) # list of files corresponding to each chain at that pixel, e.g. 2224_1, 2224_2, 2224_3, 2222_4 pixel_chains.sort() n_chains = len(pixel_chains) if n_chains > 0: cbf_pixel = rwb.read_cbf_file( cur_dir + cbf_dir + pixel_chains[0].partition('_MCMC')[0] + '_' + pixel + '.cbf') cbr_chain_list = [] for pixel_chain in pixel_chains: print(pixel_chain) cbr_chain = rwb.read_cbr_file( pixel_chain, {'nopars': len(parnames) }) # cbr file for one chain cbr_chain_list.append( cbr_chain ) # list of separate cbrs for each chain, use for gelman rubin cbr_pixel = np.copy(cbr_chain) if pixel_chains.index( pixel_chain) == 0 else np.concatenate( (cbr_pixel, cbr_chain), axis=0) # concatenate all chain cbrs #autil.plot_par_histograms(cbr_chain, parnames=parnames, savepath=cur_dir+plot_dir+'dists/', title=model+'_'+pixel_chain[:-3]+'png') flux_chain = rwb.readbinarymat( cur_dir + output_dir + 'fluxfile_' + pixel_chain[:-3] + 'bin', [ cbf_pixel['nodays'], autil.get_nofluxes_nopools_lma(model)[0] ]) pool_chain = rwb.readbinarymat( cur_dir + output_dir + 'poolfile_' + pixel_chain[:-3] + 'bin', [ cbf_pixel['nodays'] + 1, autil.get_nofluxes_nopools_lma(model)[1] ]) #autil.plot_flux_pool_timeseries(cbf_pixel, cbr_chain, flux_chain, pool_chain, autil.get_nofluxes_nopools_lma(model)[2], savepath=cur_dir+plot_dir+'timeseries/', title=model+'_'+pixel_chain[:-3]+'png') flux_pixel = np.copy(flux_chain) if pixel_chains.index( pixel_chain) == 0 else np.concatenate( (flux_pixel, flux_chain), axis=0) # concatenate all chain flux outputs pool_pixel = np.copy(pool_chain) if pixel_chains.index( pixel_chain) == 0 else np.concatenate( (pool_pixel, pool_chain), axis=0) # concatenate all chain pool outputs gr = autil.gelman_rubin( cbr_chain_list) # gelman rubin function from matt gr_thresh = 1.2 # below this value parameters are assumed to be convergent print('%i of %i parameters converged with GR<%.1f' % (sum(gr < gr_thresh), len(parnames), gr_thresh)) #autil.plot_par_histograms(cbr_pixel, parnames=parnames, savepath=cur_dir+plot_dir+'dists/', title=model+'_'+pixel_chain[:-6]+'.png') #autil.plot_flux_pool_timeseries(cbf_pixel, cbr_pixel, flux_pixel, pool_pixel, autil.get_nofluxes_nopools_lma(model)[2], savepath=cur_dir+plot_dir+'timeseries/', title=model+'_'+pixel_chain[:-6]+'.png') if (sum(gr < gr_thresh) / len(parnames) < .9 ): # don't include nonconvergent runs in analysis continue else: fwd_data = autil.get_output( var, model, flux_pixel, pool_pixel, cbr_pixel, autil.get_nofluxes_nopools_lma( model)[2]) # get forward data for var if len(fwd_data) > 0: if fwd_data.shape[1] > nsteps: fwd_data = fwd_data[:, :-1] fwd_data = autil.remove_outliers(fwd_data) # fill medians, upper bounds, and lower bounds meds[models.index(model), :] = np.nanmedian( fwd_data, axis=0) ub[models.index(model), :] = np.nanpercentile( fwd_data, 75, axis=0) lb[models.index(model), :] = np.nanpercentile( fwd_data, 25, axis=0) fwd_data = autil.remove_below_25_above_75( fwd_data ) # set values outside of 25th-75th range to nan Mp += np.nanvar( fwd_data, axis=0 ) # sum of intra-ensemble variance, only compute on 25th-75th n += 1 Ms = np.nanvar(meds, axis=0) # inter-median variance Mp = Mp / n if n != 0 else float('nan') Ms_div_sum = Ms / (Ms + Mp) Mp_div_sum = Mp / (Ms + Mp) partitioning.loc[pixel + '_' + var] = { 'Ms': np.nanmean(Ms_div_sum), 'Mp': np.nanmean(Mp_div_sum), 'n': n } Mp_pixels[pixels.index(pixel)] = np.nanmean(Mp_div_sum) print(partitioning.to_string()) partitioning.sort_index( axis=1).to_pickle(cur_dir + df_dir + 'summary' + assim_type + '_MCMC' + mcmc_id + '_' + date.today().strftime("%m%d%y") + '_' + str(len(models)) + '.pkl') return
def main(): combinations = [['811', '119', '40000000'], ['811', '3', '1000000'], ['911', '119', '40000000']] assim_type = '_longadapted' metric = sys.argv[1] vrs = [ 'NBE', 'cumNBE', 'LAI', 'GPP', 'Reco', 'Rauto', 'Rhet', 'lit', 'root', 'som', 'wood' ] pixels = [ '3809', '3524', '2224', '4170', '1945', '3813', '4054', '3264', '1271', '3457' ] ens_spread = np.ones( (len(pixels), len(vrs), len(combinations))) * float('nan') conv = np.ones((len(pixels), len(combinations))) * float('nan') cur_dir = os.getcwd() + '/' for pixel in pixels: comb_count = 0 for comb in combinations: model_id = comb[0] mcmc_id = comb[1] it = comb[2] cbf_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/cbf' + assim_type + '/' + model_id + '/' cbr_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/cbr' + assim_type + '/' + model_id + '/' output_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/output' + assim_type + '/' + model_id + '/' plot_dir = '../../../../../../scratch/users/cfamigli/cardamom/plots/' parnames = autil.get_parnames(cur_dir + '../../misc/', model_id) os.chdir(cur_dir + cbr_dir) files = glob.glob('*MCMC' + mcmc_id + '_' + it + '_' + pixel + '*.cbr') pixel_chains = autil.find_all_chains(files, pixel) pixel_chains.sort() # filenames if model_id == '911': pixel_chains = pixel_chains[-4:] print(pixel_chains) cbf_pixel = rwb.read_cbf_file( cur_dir + cbf_dir + pixel_chains[0].partition('_MCMC')[0] + '_' + pixel + '.cbf') cbr_chain_list = [] for pixel_chain in pixel_chains: print(pixel_chain) cbr_chain = rwb.read_cbr_file(pixel_chain, {'nopars': len(parnames)}) cbr_pixel = np.copy(cbr_chain) if pixel_chains.index( pixel_chain) == 0 else np.concatenate( (cbr_pixel, cbr_chain), axis=0) flux_chain = rwb.readbinarymat( cur_dir + output_dir + 'fluxfile_' + pixel_chain[:-3] + 'bin', [ cbf_pixel['nodays'], autil.get_nofluxes_nopools_lma(model_id)[0] ]) pool_chain = rwb.readbinarymat( cur_dir + output_dir + 'poolfile_' + pixel_chain[:-3] + 'bin', [ cbf_pixel['nodays'] + 1, autil.get_nofluxes_nopools_lma(model_id)[1] ]) flux_pixel = np.copy(flux_chain) if pixel_chains.index( pixel_chain) == 0 else np.concatenate( (flux_pixel, flux_chain), axis=0) pool_pixel = np.copy(pool_chain) if pixel_chains.index( pixel_chain) == 0 else np.concatenate( (pool_pixel, pool_chain), axis=0) cbr_chain_list.append(cbr_chain) print(np.shape(cbr_chain)) print(np.shape(cbr_pixel)) gr = autil.gelman_rubin(cbr_chain_list) print('%i of %i parameters converged' % (sum(gr < 1.2), len(parnames))) conv[pixels.index(pixel), comb_count] = sum(gr < 1.2) / len(parnames) * 100 for var in vrs: print(var) try: obs = cbf_pixel['OBS'][var] obs[obs == -9999] = float('nan') except: obs = np.ones(cbf_pixel['nodays']) * np.nan n_obs = np.sum(np.isfinite(obs)) fwd_data = autil.get_output( var, model_id, flux_pixel, pool_pixel, cbr_pixel, autil.get_nofluxes_nopools_lma(model_id)[2]) if len(fwd_data) > 0: if fwd_data.shape[1] > cbf_pixel['nodays']: fwd_data = fwd_data[:, :-1] fwd_data = autil.remove_outliers(fwd_data) med = np.nanmedian(fwd_data, axis=0) ub = np.nanpercentile(fwd_data, 75, axis=0) lb = np.nanpercentile(fwd_data, 25, axis=0) ens_spread[pixels.index(pixel), vrs.index(var), comb_count] = np.nanmean( abs(ub - lb)) if metric == 'spread' else np.sqrt( np.nansum((med - obs)**2) / n_obs) comb_count += 1 for var in vrs: autil.plot_spread_v_iter( ens_spread, pixels, vrs.index(var), var, it, metric, cur_dir + plot_dir + 'spread_v_iter', 'iter_test_compare_' + assim_type + '_' + model_id + '_' + var + '_' + metric, single_val=True ) #'iter_test_MCMC'+mcmc_id+'_'+model_id+'_'+var + '_' + metric) autil.plot_conv_v_iter(conv, pixels, it, cur_dir + plot_dir + 'spread_v_iter', 'iter_test_compare' + assim_type + '_' + model_id + '_conv', single_val=True) return
def main(): ### set specifications model_id = sys.argv[1] run_type = 'ALL' mcmc_id = '119' n_iter = '40000000' ens_size = 500 assim_type = '_longadapted' ### set directories cur_dir = os.getcwd() + '/' cbf_dir = cur_dir + '../../../../../../scratch/users/cfamigli/cardamom/files/cbf'+assim_type+'/' + model_id + '/' cbr_dir = cur_dir + '../../../../../../scratch/users/cfamigli/cardamom/files/cbr'+assim_type+'/' + model_id + '/' output_dir = cur_dir + '../../../../../../scratch/users/cfamigli/cardamom/files/output'+assim_type+'/' + model_id + '/' plot_dir = cur_dir + '../../../../../../scratch/users/cfamigli/cardamom/plots/' parnames = autil.get_parnames(cur_dir + '../../misc/', model_id) # get list of cbfs os.chdir(cbf_dir) cbf_files = glob.glob('*.cbf') cbf_files.sort() os.chdir(cur_dir) # initialize lists of pixel names and rmses pixels_plot = [] nbe_rmse, lai_rmse = [], [] for cbf_file in cbf_files: print(cbf_file, cbf_files.index(cbf_file)) cbf_pixel = rwb.read_cbf_file(cbf_dir + cbf_file) pixel = cbf_file[-8:-4] cbr_files = glob.glob(cbr_dir + '*MCMC'+mcmc_id+'_'+n_iter+'_' + pixel + '_*.cbr') cbr_files = sorted(cbr_files, key=lambda x: int(x.partition(pixel+'_')[-1].partition('.cbr')[0])) # get all possible XX member combinations of cbr files n_chains_to_converge = 4 cbr_files_all_subsets = [list(i) for i in itertools.combinations(cbr_files, n_chains_to_converge)] continue_check = True for subset in cbr_files_all_subsets: if continue_check: # read parameters and compute gelman rubin cbr_chain_list = [] for cbr_file in subset: cbr_chain = rwb.read_cbr_file(cbr_file, {'nopars': len(parnames)}) cbr_chain = autil.modulus_Bday_Fday(cbr_chain, parnames) if np.shape(cbr_chain)[0]==ens_size: cbr_chain_list.append(cbr_chain) if len(cbr_chain_list)>1: gr = autil.gelman_rubin(cbr_chain_list) if sum(gr<1.2)/len(parnames)>=0.9: continue_check = False cbr_agg = np.vstack(cbr_chain_list) pixels_plot.append(pixel) best_subset = subset.copy() else: gr = np.nan # if there is a convergent subset, read fluxes and pools if not continue_check: convergent_chain_nums = [el.partition('.cbr')[0].partition(pixel)[-1][1:] for el in best_subset] convergent_files = [el.partition('.cbr')[0].partition(model_id+'/')[-1] for el in best_subset] flux_pixel = [] pool_pixel = [] for filename in convergent_files: flux_chain = rwb.readbinarymat(output_dir + 'fluxfile_' + filename+'.bin', [cbf_pixel['nodays'], autil.get_nofluxes_nopools_lma(model_id)[0]]) pool_chain = rwb.readbinarymat(output_dir + 'poolfile_' + filename+'.bin', [cbf_pixel['nodays']+1, autil.get_nofluxes_nopools_lma(model_id)[1]]) if (flux_chain.shape[0]==ens_size) & (pool_chain.shape[0]==ens_size): flux_pixel.append(flux_chain) pool_pixel.append(pool_chain) nbe_pred = autil.get_output('NBE', model_id, np.vstack(flux_pixel), np.vstack(pool_pixel), cbr_agg, autil.get_nofluxes_nopools_lma(model_id)[2]) lai_pred = autil.get_output('LAI', model_id, np.vstack(flux_pixel), np.vstack(pool_pixel), cbr_agg, autil.get_nofluxes_nopools_lma(model_id)[2]) nbe_obs, lai_obs = cbf_pixel['OBS']['NBE'], cbf_pixel['OBS']['LAI'] nbe_rmse.append(rmse_real_numbers_only(nbe_pred, nbe_obs)) lai_rmse.append(rmse_real_numbers_only(lai_pred, lai_obs)) print(rmse_real_numbers_only(nbe_pred, nbe_obs), rmse_real_numbers_only(lai_pred, lai_obs)) autil.plot_map(nrows=46, ncols=73, land_pixel_list=[file[-8:-4] for file in glob.glob(cbf_dir + '*.cbf')], pixel_value_list=pixels_plot, value_list=nbe_rmse, savepath=plot_dir+'maps/', savename='rmse_nbe_' + model_id + assim_type+ '_MCMC' + mcmc_id + '_' + n_iter) autil.plot_map(nrows=46, ncols=73, land_pixel_list=[file[-8:-4] for file in glob.glob(cbf_dir + '*.cbf')], pixel_value_list=pixels_plot, value_list=lai_rmse, savepath=plot_dir+'maps/', savename='rmse_lai_' + model_id + assim_type+ '_MCMC' + mcmc_id + '_' + n_iter) rmse_df = DataFrame(list(zip(pixels_plot, nbe_rmse, lai_rmse))) rmse_df.columns = ['pixel','nbe_rmse','lai_rmse'] rmse_df.to_pickle(cur_dir + '../../misc/rmse_' + model_id + assim_type+ '_MCMC' + mcmc_id + '_' + n_iter + '.pkl') ################################################################################################################################################################# # analyze regionally '''region_mask = Dataset(cur_dir + '../../misc/fourregion_maskarrays.nc') region_mask.set_auto_mask(False) regionmat, lat, lon = region_mask['4region'][:], region_mask['lat'][:], region_mask['lon'][:] lat[0] = -90 lat[-1] = 90 model_ids = ['811', '911'] rmse_dfs = [] for model_id in model_ids: rmse_df = read_pickle(cur_dir + '../../misc/rmse_' + model_id + assim_type+ '_MCMC' + mcmc_id + '_' + n_iter + '.pkl') rmse_df.columns = ['pixel','nbe_rmse','lai_rmse'] regions = [] for pixel in rmse_df[rmse_df.columns[0]].tolist(): pixlat, pixlon = rwb.rowcol_to_latlon(pixel) regions.append(regionmat[np.argwhere(lat==pixlat)[0][0], np.argwhere(lon==pixlon)[0][0]]) rmse_df.insert(loc=1, column='region', value=regions) rmse_dfs.append(rmse_df) print(rmse_dfs[0].groupby('region')['nbe_rmse'].mean(), rmse_dfs[0].groupby('region')['lai_rmse'].mean()) print(rmse_dfs[1].groupby('region')['nbe_rmse'].mean(), rmse_dfs[1].groupby('region')['lai_rmse'].mean())''' return
def main(): model_id = sys.argv[1] run_type = sys.argv[2] # ALL or SUBSET mcmc_id = sys.argv[3] # 119 for normal, 3 for DEMCMC nbe_optimization = sys.argv[4] # 'OFF' or 'ON' assim_type = '_p25adapted' cur_dir = os.getcwd() + '/' mdf_dir = '../code/CARDAMOM_2.1.6c/C/projects/CARDAMOM_MDF/' if nbe_optimization == 'OFF' else '../code/CARDAMOM_Uma_2.1.6c-master/C/projects/CARDAMOM_MDF/' runmodel_dir = '../code/CARDAMOM_2.1.6c/C/projects/CARDAMOM_GENERAL/' if nbe_optimization == 'OFF' else '../code/CARDAMOM_Uma_2.1.6c-master/C/projects/CARDAMOM_GENERAL/' cbf_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/cbf' + assim_type + '/' + model_id + '/' cbr_dir = '../../../../../scratch/users/cfamigli/cardamom/files/cbr' + assim_type + '/' + model_id + '/' output_dir = '../../../../../scratch/users/cfamigli/cardamom/files/output' + assim_type + '/' + model_id + '/' plot_dir = '../../../../../../scratch/users/cfamigli/cardamom/plots/' parnames = autil.get_parnames('../../misc/', model_id) n_iterations = sys.argv[5] runtime_assim = int(sys.argv[6]) resubmit_num = sys.argv[7] n_chains_resubmit = 4 ens_size = 500 if mcmc_id == '119': frac_save_out = str(int(int(n_iterations) / 500)) elif mcmc_id == '3': frac_save_out = str(int( int(n_iterations) / 500 * 100)) # n_iterations/ frac_save_out * 100 will be ensemble size # select which pixels to submit os.chdir(cbf_dir) if run_type == 'ALL': cbf_files = glob.glob('*.cbf') elif run_type == 'SUBSET_RANDOM': cbf_files = sample(glob.glob('*.cbf'), 10) elif run_type == 'SUBSET_INPUT': cbf_files = select_cbf_files(glob.glob('*.cbf'), [ '3809', '3524', '2224', '4170', '1945', '3813', '4054', '3264', '1271', '3457' ]) os.chdir(cur_dir + '/../') cbf_files.sort() # create one combined submission file with all assimilation and forward commands for each pixel's chain on one line txt_filename = 'combined_assim_forward_list_' + model_id + '_' + run_type + assim_type + '_MCMC' + mcmc_id + '_' + n_iterations + '_resubmit' + resubmit_num + '.txt' txt_file = open(txt_filename, 'w') resubmit_count = 0 gr_pixels = np.zeros( len(cbf_files)) * np.nan # list of GR for each pixel, for mapping pixels = [] best_subset = [] conv_bool_lst = [] for cbf_file in cbf_files: best_subset_pixel = [] resubmit = False print(cbf_file, cbf_files.index(cbf_file)) cbf_pixel = rwb.read_cbf_file(cur_dir + cbf_dir + cbf_file) pixel = cbf_file[-8:-4] cbr_files = glob.glob(cur_dir + '../' + cbr_dir + '*MCMC' + mcmc_id + '_' + n_iterations + '_' + pixel + '_*.cbr') cbr_files = sorted( cbr_files, key=lambda x: int( x.partition(pixel + '_')[-1].partition('.cbr')[0])) if len(cbr_files) >= n_chains_resubmit: pixels.append(pixel) #cbr_files = cbr_files[:16] ############ TEMP if len(cbr_files) > 0: end_chain = int( cbr_files[-1].partition(pixel + '_')[-1].partition('.cbr')[0]) #print('ENDCHAIN: '+str(end_chain)) else: end_chain = 0 resubmit = True # get all possible XX member combinations of cbr files n_chains_to_converge = n_chains_resubmit cbr_files_all_subsets = [ list(i) for i in itertools.combinations(cbr_files, n_chains_to_converge) ] continue_check = True for subset in cbr_files_all_subsets: if continue_check: # read parameters and compute gelman rubin cbr_chain_list = [] chain_nums = ['0'] for cbr_file in subset: #print(cbr_file[-10:-4]) cbr_chain = rwb.read_cbr_file(cbr_file, {'nopars': len(parnames)}) cbr_chain = autil.modulus_Bday_Fday(cbr_chain, parnames) chain_nums.append( cbr_file.partition('.cbr')[0].partition(pixel + '_') [-1]) # append chain number if np.shape(cbr_chain)[0] == ens_size: cbr_chain_list.append(cbr_chain) #print(np.shape(cbr_chain)) else: print('incorrect ensemble size)') resubmit = True if len(cbr_chain_list) > 1: gr = autil.gelman_rubin(cbr_chain_list) #print(gr) print( '%i/%i' % (sum(gr < 1.2), len(parnames)) ) #print('%i of %i parameters converged' % (sum(gr<1.2), len(parnames))) if (np.isnan(gr_pixels[cbf_files.index(cbf_file)])): gr_pixels[cbf_files.index(cbf_file)] = sum( gr < 1.2) / len(parnames) #if len(cbr_files_all_subsets)==1: best_subset_pixel.append(chain_nums) if sum(gr < 1.2) / len(parnames) < 0.9: #print('gr too low') resubmit = True if (sum(gr < 1.2) / len(parnames) >= gr_pixels[cbf_files.index(cbf_file)]): gr_pixels[cbf_files.index(cbf_file)] = sum( gr < 1.2) / len(parnames) best_subset_pixel.append(chain_nums) conv_bool = 0 else: resubmit = False continue_check = False gr_pixels[cbf_files.index(cbf_file)] = sum( gr < 1.2) / len(parnames) best_subset_pixel.append(chain_nums) conv_bool = 1 else: gr = np.nan print('gr undefined') best_subset_pixel.append(chain_nums) conv_bool = 0 resubmit = True if len(best_subset_pixel) > 0: best_subset.append(best_subset_pixel[-1]) conv_bool_lst.append(conv_bool) # write into text file if pixel needs to be resubmitted if resubmit: first_resubmit_chain = end_chain + 1 last_resubmit_chain = end_chain + n_chains_resubmit for chain in range(first_resubmit_chain, last_resubmit_chain + 1): c = '_' + str(chain) txt_file.write( '%sCARDAMOM_MDF.exe %s%s %s%s %s 0 %s 0.001 %s 1000' % (mdf_dir, cbf_dir[3:], cbf_file, cbr_dir, cbf_file[:-8] + 'MCMC' + mcmc_id + '_' + n_iterations + '_' + cbf_file[-8:-4] + c + '.cbr', n_iterations, frac_save_out, mcmc_id)) txt_file.write( ' && %sCARDAMOM_RUN_MODEL.exe %s%s %s%s %s%s %s%s %s%s %s%s' % (runmodel_dir, cbf_dir[3:], cbf_file, cbr_dir, cbf_file[:-8] + 'MCMC' + mcmc_id + '_' + n_iterations + '_' + cbf_file[-8:-4] + c + '.cbr', output_dir, 'fluxfile_' + cbf_file[:-8] + 'MCMC' + mcmc_id + '_' + n_iterations + '_' + cbf_file[-8:-4] + c + '.bin', output_dir, 'poolfile_' + cbf_file[:-8] + 'MCMC' + mcmc_id + '_' + n_iterations + '_' + cbf_file[-8:-4] + c + '.bin', output_dir, 'edcdfile_' + cbf_file[:-8] + 'MCMC' + mcmc_id + '_' + n_iterations + '_' + cbf_file[-8:-4] + c + '.bin', output_dir, 'probfile_' + cbf_file[:-8] + 'MCMC' + mcmc_id + '_' + n_iterations + '_' + cbf_file[-8:-4] + c + '.bin')) txt_file.write( ' && ') if chain < last_resubmit_chain else txt_file.write( '\n') resubmit_count += 1 txt_file.close() sh_file = open(txt_filename[:-3] + 'sh', 'w') autil.fill_in_sh(sh_file, array_size=resubmit_count, n_hours=runtime_assim, txt_file=txt_filename, combined=True) autil.plot_map(nrows=46, ncols=73, land_pixel_list=pixels, pixel_value_list=pixels, value_list=gr_pixels * 100, savepath=cur_dir + plot_dir + 'maps/', savename='gr_' + model_id + assim_type + '_' + run_type + '_MCMC' + mcmc_id + '_' + n_iterations + '_resubmit' + resubmit_num) #print(pixels, best_subset, conv_bool_lst) print(len(pixels), len(best_subset), len(conv_bool_lst)) DataFrame(list( zip(pixels, best_subset, conv_bool_lst))).to_pickle(cur_dir + '../' + cbr_dir + model_id + assim_type + '_' + run_type + '_MCMC' + mcmc_id + '_' + n_iterations + '_best_subset.pkl') return
def main(): model_id = sys.argv[1] run_type = sys.argv[2] # ALL or SUBSET mcmc_id = sys.argv[3] # 119 for normal, 3 for DEMCMC n_iter = sys.argv[4] var_to_plot = sys.argv[5] # GR, a flux or pool, or PARXX ens_size = 500 assim_type = '_longadapted' cur_dir = os.getcwd() + '/' if 'scripts' not in cur_dir: cur_dir = cur_dir + 'scripts/' cbf_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/cbf'+assim_type+'/' + model_id + '/' cbr_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/cbr'+assim_type+'/' + model_id + '/' output_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/output'+assim_type+'/' + model_id + '/' plot_dir = '../../../../../../scratch/users/cfamigli/cardamom/plots/' parnames = autil.get_parnames(cur_dir + '../../misc/', model_id) os.chdir(cbr_dir) files = glob.glob('*MCMC'+mcmc_id+'_'+n_iter+'_*.cbr') pixel = sys.argv[6] print(pixel) pixel_chains = autil.find_all_chains(files, pixel) pixel_chains.sort() # filenames print(pixel_chains) cbf_pixel = rwb.read_cbf_file(cur_dir + cbf_dir + pixel_chains[0].partition('_MCMC')[0]+'_'+pixel+'.cbf') cbr_chain_list = [] for pixel_chain in pixel_chains: print(pixel_chain) cbr_chain = rwb.read_cbr_file(pixel_chain, {'nopars': len(parnames)}) cbr_pixel = np.copy(cbr_chain) if pixel_chains.index(pixel_chain)==0 else np.concatenate((cbr_pixel, cbr_chain), axis=0) flux_chain = rwb.readbinarymat(cur_dir + output_dir + 'fluxfile_' + pixel_chain[:-3]+'bin', [cbf_pixel['nodays'], autil.get_nofluxes_nopools_lma(model_id)[0]]) pool_chain = rwb.readbinarymat(cur_dir + output_dir + 'poolfile_' + pixel_chain[:-3]+'bin', [cbf_pixel['nodays']+1, autil.get_nofluxes_nopools_lma(model_id)[1]]) flux_pixel = np.copy(flux_chain) if pixel_chains.index(pixel_chain)==0 else np.concatenate((flux_pixel, flux_chain), axis=0) pool_pixel = np.copy(pool_chain) if pixel_chains.index(pixel_chain)==0 else np.concatenate((pool_pixel, pool_chain), axis=0) if np.shape(cbr_chain)[0]==ens_size: cbr_chain_list.append(cbr_chain) print(np.shape(cbr_chain)) ### COMPUTE GELMAN RUBIN if len(cbr_chain_list)>1: gr = autil.gelman_rubin(cbr_chain_list) gr_pixel = sum(gr<1.2)/len(parnames) else: gr_pixel = -9999. ### DETERMINE DATA TO WRITE TO FILE if var_to_plot == 'GR': data = np.copy(gr_pixel) elif 'PAR' in var_to_plot: parnum = int(var_to_plot.partition('PAR')[-1]) if gr_pixel>0.9: data = np.nanmedian(cbr_pixel[:,parnum-1]) else: data = -9999. else: if gr_pixel>0.9: data = np.nanmean(np.nanmedian(autil.get_output(var_to_plot, model_id, flux_pixel, pool_pixel, cbr_pixel, autil.get_nofluxes_nopools_lma(model_id)[2]), axis=0)) else: data = -9999. with open(cur_dir + '../../misc/' + model_id + '_' + pixel_chains[0].partition('_MCMC')[0] + '_MCMC' + mcmc_id + '_' + n_iter + '_' + var_to_plot + '.csv','a') as f: writer = csv.writer(f) new_row = [pixel, data] assert len(new_row)==2 writer.writerow(new_row) return
def main(): model_id_start = sys.argv[1] run_type = sys.argv[2] # ALL or SUBSET metric = sys.argv[3] # spread or RMSE assim_type = '_p25adapted' compare_between = sys.argv[4] # MCMCID or MODEL or NBEUNC n_iters = [ ['40000000'], ['40000000'] ] #['500000','1000000','2500000','5000000','10000000'],['40000000']]#[['100000', '250000', '500000', '1000000', '1750000', '2500000', '5000000'], ['100000', '250000', '500000', '1000000', '5000000', '10000000', '25000000','50000000']] vrs = [ 'NBE', 'cumNBE', 'LAI', 'GPP', 'Reco', 'Rauto', 'Rhet', 'lit', 'root', 'som', 'wood' ] pixels = [ '3809', '3524', '2224', '4170', '1945', '3813', '4054', '3264', '1271', '3457' ] cur_dir = os.getcwd() + '/' cbf_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/cbf' + assim_type + '/' + model_id_start + '/' cbr_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/cbr' + assim_type + '/' + model_id_start + '/' output_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/output' + assim_type + '/' + model_id_start + '/' plot_dir = '../../../../../../scratch/users/cfamigli/cardamom/plots/' parnames = autil.get_parnames('../../misc/', model_id_start) if compare_between == 'MCMCID': comps = ['3', '119'] elif compare_between == 'MODEL': comps = [model_id_start, '911'] mcmc_id = '119' elif compare_between == 'NBEUNC': comps = [assim_type, '_p25adapted_NBEuncreduced'] mcmc_id = '119' ens_spread = [ np.ones((len(pixels), len(vrs), len(n_iters[0]))) * float('nan'), np.ones((len(pixels), len(vrs), len(n_iters[1]))) * float('nan') ] conv = [ np.ones((len(pixels), len(n_iters[0]))) * float('nan'), np.ones((len(pixels), len(n_iters[1]))) * float('nan') ] for pixel in pixels: for comp in comps: if compare_between == 'MCMCID': mcmc_id = comp elif compare_between == 'MODEL': model_id_start = comp cbf_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/cbf' + assim_type + '/' + comp + '/' cbr_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/cbr' + assim_type + '/' + comp + '/' output_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/output' + assim_type + '/' + comp + '/' plot_dir = '../../../../../../scratch/users/cfamigli/cardamom/plots/' parnames = autil.get_parnames(cur_dir + '../../misc/', comp) elif compare_between == 'NBEUNC': assim_type = comp cbf_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/cbf' + comp + '/' + model_id_start + '/' cbr_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/cbr' + comp + '/' + model_id_start + '/' output_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/output' + comp + '/' + model_id_start + '/' plot_dir = '../../../../../../scratch/users/cfamigli/cardamom/plots/' parnames = autil.get_parnames(cur_dir + '../../misc/', model_id_start) os.chdir(cur_dir + cbr_dir) for it in n_iters[comps.index(comp)]: files = glob.glob('*MCMC' + mcmc_id + '_' + it + '_' + pixel + '*.cbr') pixel_chains = autil.find_all_chains(files, pixel) pixel_chains.sort() # filenames #if ((comp=='911') & (pixel_chains[0][-5]=='1')): pixel_chains.pop(0) #if ((comp=='911') & (pixel_chains[0][-5]=='2')): pixel_chains.pop(0) print(pixel_chains) cbf_pixel = rwb.read_cbf_file( cur_dir + cbf_dir + pixel_chains[0].partition('_MCMC')[0] + '_' + pixel + '.cbf') cbr_chain_list = [] for pixel_chain in pixel_chains[:4]: print(pixel_chain) cbr_chain = rwb.read_cbr_file(pixel_chain, {'nopars': len(parnames)}) cbr_pixel = np.copy(cbr_chain) if pixel_chains.index( pixel_chain) == 0 else np.concatenate( (cbr_pixel, cbr_chain), axis=0) flux_chain = rwb.readbinarymat( cur_dir + output_dir + 'fluxfile_' + pixel_chain[:-3] + 'bin', [ cbf_pixel['nodays'], autil.get_nofluxes_nopools_lma(model_id_start)[0] ]) pool_chain = rwb.readbinarymat( cur_dir + output_dir + 'poolfile_' + pixel_chain[:-3] + 'bin', [ cbf_pixel['nodays'] + 1, autil.get_nofluxes_nopools_lma(model_id_start)[1] ]) flux_pixel = np.copy(flux_chain) if pixel_chains.index( pixel_chain) == 0 else np.concatenate( (flux_pixel, flux_chain), axis=0) pool_pixel = np.copy(pool_chain) if pixel_chains.index( pixel_chain) == 0 else np.concatenate( (pool_pixel, pool_chain), axis=0) cbr_chain_list.append(cbr_chain) print(np.shape(cbr_chain)) print(np.shape(cbr_pixel)) gr = autil.gelman_rubin(cbr_chain_list) print('%i of %i parameters converged' % (sum(gr < 1.2), len(parnames))) conv[comps.index( comp)][pixels.index(pixel), n_iters[comps.index(comp)].index(it)] = sum( gr < 1.2) / len(parnames) * 100 for var in vrs: print(var) try: obs = cbf_pixel['OBS'][var] obs[obs == -9999] = float('nan') except: obs = np.ones(cbf_pixel['nodays']) * np.nan n_obs = np.sum(np.isfinite(obs)) fwd_data = autil.get_output( var, model_id_start, flux_pixel, pool_pixel, cbr_pixel, autil.get_nofluxes_nopools_lma(model_id_start)[2]) if len(fwd_data) > 0: if fwd_data.shape[1] > cbf_pixel['nodays']: fwd_data = fwd_data[:, :-1] fwd_data = autil.remove_outliers(fwd_data) med = np.nanmedian(fwd_data, axis=0) ub = np.nanpercentile(fwd_data, 75, axis=0) lb = np.nanpercentile(fwd_data, 25, axis=0) ens_spread[comps.index(comp)][ pixels.index(pixel), vrs.index(var), n_iters[comps.index(comp)].index(it)] = np.nanmean( abs(ub - lb)) if metric == 'spread' else np.sqrt( np.nansum((med - obs)**2) / n_obs) print(ens_spread[comps.index(comp)] [pixels.index(pixel), vrs.index(var), n_iters[comps.index(comp)].index(it)]) print(ens_spread) for var in vrs: autil.plot_spread_v_iter( ens_spread, pixels, vrs.index(var), var, n_iters, metric, cur_dir + plot_dir + 'spread_v_iter', 'iter_test' + assim_type + '_' + compare_between + '_' + model_id_start + '_' + var + '_' + metric, single_val=True ) #'iter_test_MCMC'+mcmc_id+'_'+model_id_start+'_'+var + '_' + metric) autil.plot_conv_v_iter(conv, pixels, n_iters, cur_dir + plot_dir + 'spread_v_iter', 'iter_test' + assim_type + '_' + compare_between + '_' + model_id_start + '_conv', single_val=True) return
def main(): model_id = sys.argv[1] run_type = sys.argv[2] # ALL or SUBSET mcmc_id = sys.argv[3] # 119 for normal, 3 for DEMCMC n_iter = sys.argv[4] ens_size = 500 assim_type = '_p25adapted' use_bestchains_pkl = False cur_dir = os.getcwd() + '/' cbf_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/cbf'+assim_type+'_ef_ic/' + model_id + '/' cbr_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/cbr'+assim_type+'_ef/' + model_id + '/' output_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/output'+assim_type+'_ef/' + model_id + '/' plot_dir = '../../../../../../scratch/users/cfamigli/cardamom/plots/' parnames = autil.get_parnames('../../misc/', model_id) # load list of land pixels pixels = list(set([file[-8:-4] for file in glob.glob(cbf_dir + '*.cbf')])) if run_type=='ALL' else ['3809','3524','2224','4170','1945','3813','4054','3264','1271','3457'] pixels.sort() # load list of cbrs cbr_files = glob.glob(cbr_dir+'*MCMC'+mcmc_id+'_'+n_iter+'_*PLS*forward*.cbr') # for loop over pixels gr_pixels = np.zeros(len(pixels))*np.nan # list of GR for each pixel, for mapping par_pixels = np.zeros((len(pixels), len(parnames)))*np.nan for pixel in pixels: print(pixel, pixels.index(pixel)) pixel_chains = autil.find_all_chains(cbr_files, pixel) pixel_chains.sort() # filenames if use_bestchains_pkl: conv_chains_pkl = read_pickle(glob.glob(cbr_dir + model_id + assim_type + '*_MCMC'+mcmc_id + '_'+n_iter+'_best_subset.pkl')[0]) conv_chains_pkl.columns = ['pixel','bestchains','conv'] #rename columns for easier access if pixel in conv_chains_pkl['pixel'].values: bestchains = conv_chains_pkl.loc[conv_chains_pkl['pixel']==pixel]['bestchains'].values[0][1:] print(bestchains) pixel_chains = [pixel_chain for pixel_chain in pixel_chains if pixel_chain.partition(pixel+'_')[-1][:-4] in bestchains] else: continue #cbf_pixel = rwb.read_cbf_file(cur_dir + cbf_dir + pixel_chains[0].partition('_MCMC')[0]+'_'+pixel+'.cbf') cbf_filename = glob.glob(cur_dir + cbf_dir + '*'+pixel+'.cbf')[0] cbf_pixel = rwb.read_cbf_file(cbf_filename) cbr_chain_list = [] for pixel_chain in pixel_chains: print(pixel_chain) cbr_chain = rwb.read_cbr_file(pixel_chain, {'nopars': len(parnames)}) cbr_chain = autil.modulus_Bday_Fday(cbr_chain, parnames) cbr_pixel = np.copy(cbr_chain) if pixel_chains.index(pixel_chain)==0 else np.concatenate((cbr_pixel, cbr_chain), axis=0) #autil.plot_par_histograms(cbr_chain, parnames=parnames, savepath=cur_dir+plot_dir+'dists/', title=model_id+'_'+pixel_chain[:-3]+'png') try: flux_chain = rwb.readbinarymat(cur_dir + output_dir + 'fluxfile_' + pixel_chain.partition(cbr_dir)[-1][:-3]+'bin', [cbf_pixel['nodays'], autil.get_nofluxes_nopools_lma(model_id)[0]]) pool_chain = rwb.readbinarymat(cur_dir + output_dir + 'poolfile_' + pixel_chain.partition(cbr_dir)[-1][:-3]+'bin', [cbf_pixel['nodays']+1, autil.get_nofluxes_nopools_lma(model_id)[1]]) #autil.plot_flux_pool_timeseries(cbf_pixel, cbr_chain, flux_chain, pool_chain, autil.get_nofluxes_nopools_lma(model_id)[2], savepath=cur_dir+plot_dir+'timeseries/', title=model_id+'_'+pixel_chain[:-3]+'png') flux_pixel = np.copy(flux_chain) if pixel_chains.index(pixel_chain)==0 else np.concatenate((flux_pixel, flux_chain), axis=0) pool_pixel = np.copy(pool_chain) if pixel_chains.index(pixel_chain)==0 else np.concatenate((pool_pixel, pool_chain), axis=0) except Exception as e: pass if np.shape(cbr_chain)[0]==ens_size: cbr_chain_list.append(cbr_chain) #print(np.shape(cbr_chain)) if len(cbr_chain_list)>1: gr = autil.gelman_rubin(cbr_chain_list) #print(gr) print('%i of %i parameters converged' % (sum(gr<1.2), len(parnames))) gr_pixels[pixels.index(pixel)] = sum(gr<1.2)/len(parnames) else: gr = np.nan par_pixels[pixels.index(pixel),:] = np.nanmedian(cbr_pixel, axis=0) #autil.plot_par_histograms(cbr_pixel, parnames=parnames, savepath=cur_dir+plot_dir+'dists/', title=model_id+assim_type+'_MCMC'+mcmc_id+'_'+cbf_filename.partition(cbf_dir)[-1][:-4]+'.png') #autil.plot_flux_pool_timeseries(cbf_pixel, cbr_pixel, flux_pixel, pool_pixel, autil.get_nofluxes_nopools_lma(model_id)[2], savepath=cur_dir+plot_dir+'timeseries/', title=model_id+assim_type+'_MCMC'+mcmc_id+'_'+cbf_filename.partition(cbf_dir)[-1][:-4]+'.png') #vmax = [None,None,None,None,None,None,None,None,None,None,None,None,None,None,None,None,None,210,200,215,6600,195,24000,None,None,None,900,None,None,None,None,None,None,None] #np.nanpercentile(par_pixels[:,par], 90) for par in range(len(parnames)): autil.plot_map(nrows=46, ncols=73, land_pixel_list=[file[-8:-4] for file in glob.glob(cur_dir + cbf_dir + '*.cbf')], pixel_value_list=pixels, value_list=par_pixels[:,par], vmax=np.nanpercentile(par_pixels[:,par], 90), savepath=cur_dir+plot_dir+'maps/', savename='par'+str(par)+'_' + model_id +assim_type+ '_MCMC' + mcmc_id +'_'+ n_iter+'_EF_clipped_PLS_soilgrids_poolobs_rescaled_forward') #autil.plot_map(nrows=46, ncols=73, land_pixel_list=[file[-8:-4] for file in glob.glob(cur_dir + cbf_dir + '*.cbf')], pixel_value_list=pixels, value_list=np.ones(len(pixels)), savepath=cur_dir+plot_dir+'maps/', title='test_pixels.png') #autil.plot_map(nrows=46, ncols=73, land_pixel_list=[file[-8:-4] for file in glob.glob(cur_dir + cbf_dir + '*.cbf')], pixel_value_list=pixels, value_list=gr_pixels*100, savepath=cur_dir+plot_dir+'maps/', savename='gr_' + model_id + assim_type+ '_' +run_type+ '_MCMC' + mcmc_id + '_' + n_iter) return