def main(): combinations = [['811', '119', '40000000'], ['811', '3', '1000000'], ['911', '119', '40000000']] assim_type = '_longadapted' metric = sys.argv[1] vrs = [ 'NBE', 'cumNBE', 'LAI', 'GPP', 'Reco', 'Rauto', 'Rhet', 'lit', 'root', 'som', 'wood' ] pixels = [ '3809', '3524', '2224', '4170', '1945', '3813', '4054', '3264', '1271', '3457' ] ens_spread = np.ones( (len(pixels), len(vrs), len(combinations))) * float('nan') conv = np.ones((len(pixels), len(combinations))) * float('nan') cur_dir = os.getcwd() + '/' for pixel in pixels: comb_count = 0 for comb in combinations: model_id = comb[0] mcmc_id = comb[1] it = comb[2] cbf_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/cbf' + assim_type + '/' + model_id + '/' cbr_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/cbr' + assim_type + '/' + model_id + '/' output_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/output' + assim_type + '/' + model_id + '/' plot_dir = '../../../../../../scratch/users/cfamigli/cardamom/plots/' parnames = autil.get_parnames(cur_dir + '../../misc/', model_id) os.chdir(cur_dir + cbr_dir) files = glob.glob('*MCMC' + mcmc_id + '_' + it + '_' + pixel + '*.cbr') pixel_chains = autil.find_all_chains(files, pixel) pixel_chains.sort() # filenames if model_id == '911': pixel_chains = pixel_chains[-4:] print(pixel_chains) cbf_pixel = rwb.read_cbf_file( cur_dir + cbf_dir + pixel_chains[0].partition('_MCMC')[0] + '_' + pixel + '.cbf') cbr_chain_list = [] for pixel_chain in pixel_chains: print(pixel_chain) cbr_chain = rwb.read_cbr_file(pixel_chain, {'nopars': len(parnames)}) cbr_pixel = np.copy(cbr_chain) if pixel_chains.index( pixel_chain) == 0 else np.concatenate( (cbr_pixel, cbr_chain), axis=0) flux_chain = rwb.readbinarymat( cur_dir + output_dir + 'fluxfile_' + pixel_chain[:-3] + 'bin', [ cbf_pixel['nodays'], autil.get_nofluxes_nopools_lma(model_id)[0] ]) pool_chain = rwb.readbinarymat( cur_dir + output_dir + 'poolfile_' + pixel_chain[:-3] + 'bin', [ cbf_pixel['nodays'] + 1, autil.get_nofluxes_nopools_lma(model_id)[1] ]) flux_pixel = np.copy(flux_chain) if pixel_chains.index( pixel_chain) == 0 else np.concatenate( (flux_pixel, flux_chain), axis=0) pool_pixel = np.copy(pool_chain) if pixel_chains.index( pixel_chain) == 0 else np.concatenate( (pool_pixel, pool_chain), axis=0) cbr_chain_list.append(cbr_chain) print(np.shape(cbr_chain)) print(np.shape(cbr_pixel)) gr = autil.gelman_rubin(cbr_chain_list) print('%i of %i parameters converged' % (sum(gr < 1.2), len(parnames))) conv[pixels.index(pixel), comb_count] = sum(gr < 1.2) / len(parnames) * 100 for var in vrs: print(var) try: obs = cbf_pixel['OBS'][var] obs[obs == -9999] = float('nan') except: obs = np.ones(cbf_pixel['nodays']) * np.nan n_obs = np.sum(np.isfinite(obs)) fwd_data = autil.get_output( var, model_id, flux_pixel, pool_pixel, cbr_pixel, autil.get_nofluxes_nopools_lma(model_id)[2]) if len(fwd_data) > 0: if fwd_data.shape[1] > cbf_pixel['nodays']: fwd_data = fwd_data[:, :-1] fwd_data = autil.remove_outliers(fwd_data) med = np.nanmedian(fwd_data, axis=0) ub = np.nanpercentile(fwd_data, 75, axis=0) lb = np.nanpercentile(fwd_data, 25, axis=0) ens_spread[pixels.index(pixel), vrs.index(var), comb_count] = np.nanmean( abs(ub - lb)) if metric == 'spread' else np.sqrt( np.nansum((med - obs)**2) / n_obs) comb_count += 1 for var in vrs: autil.plot_spread_v_iter( ens_spread, pixels, vrs.index(var), var, it, metric, cur_dir + plot_dir + 'spread_v_iter', 'iter_test_compare_' + assim_type + '_' + model_id + '_' + var + '_' + metric, single_val=True ) #'iter_test_MCMC'+mcmc_id+'_'+model_id+'_'+var + '_' + metric) autil.plot_conv_v_iter(conv, pixels, it, cur_dir + plot_dir + 'spread_v_iter', 'iter_test_compare' + assim_type + '_' + model_id + '_conv', single_val=True) return
def main(): # get specifications for run to read model_ids = ['811','811','911','911'] assim_type = '_p25adapted' ens_size = 500 # get pixels, ids and number of iterations to read cbf_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/cbf'+assim_type+'/' + model_ids[0] + '/' pixels = ['3809','3524','2224','4170','1945','3813','4054','3264','1271','3457'] mcmc_ids = ['119','3','3','119'] n_iters = ['40000000','1000000','1000000','40000000'] nbe_mae, lai_mae, abgb_mae, gpp_mae = [], [], [], [] # run through pixels for pixel in pixels: # get that pixel's outputs for each MCMCID nbe_pred, lai_pred, abgb_pred, gpp_pred = [], [], [], [] for model_id, mcmc_id, n_iter in zip(model_ids, mcmc_ids, n_iters): # set directories cur_dir = os.getcwd() + '/' cbf_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/cbf'+assim_type+'/' + model_id + '/' cbr_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/cbr'+assim_type+'/' + model_id + '/' output_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/output'+assim_type+'/' + model_id + '/' plot_dir = '../../../../../../scratch/users/cfamigli/cardamom/plots/' parnames = autil.get_parnames('../../misc/', model_id) # read cbf file for that pixel cbf_pixel = rwb.read_cbf_file(glob.glob(cbf_dir + '*_' + pixel+'.cbf')[0]) # read obs and obs unc for that pixel nbe_obs, lai_obs, abgb_obs, sif_obs = cbf_pixel['OBS']['NBE'], cbf_pixel['OBS']['LAI'], cbf_pixel['OBS']['ABGB'], cbf_pixel['OBS']['GPP'] nbe_an_unc, nbe_seas_unc, lai_unc, abgb_unc = cbf_pixel['OBSUNC']['NBE']['annual_unc'], cbf_pixel['OBSUNC']['NBE']['seasonal_unc'], cbf_pixel['OTHER_OBS']['MLAI']['unc'], cbf_pixel['OBSUNC']['ABGB']['unc'] conv_chains_pkl = read_pickle(glob.glob(cbr_dir + model_id + assim_type + '*_MCMC'+mcmc_id + '_'+n_iter+'_best_subset.pkl')[0]) conv_chains_pkl.columns = ['pixel','bestchains','conv']# if model_id!='911' else ['pixel','bestchains'] #rename columns for easier access # grab cbrs corresponding to that pixel, MCMCID and number of iterations files = glob.glob(cbr_dir + '*MCMC'+mcmc_id+'_' + n_iter + '_'+ pixel+'*.cbr') files.sort() best_chains = conv_chains_pkl.loc[conv_chains_pkl['pixel']==pixel]['bestchains'].values[0][1:] # run through cbrs cbr_chain_list = [] for chain in best_chains: print(chain) # read cbr for one file and transform Bday, Fday file = [i for i in files if pixel+'_'+chain+'.cbr' in i][0] cbr_chain = autil.modulus_Bday_Fday(rwb.read_cbr_file(file, {'nopars': len(parnames)}), parnames) print(cbr_chain.shape) # read forward run for that cbr flux_chain = rwb.readbinarymat(output_dir + 'fluxfile_' + file.partition(cbr_dir)[-1][:-3]+'bin', [cbf_pixel['nodays'], autil.get_nofluxes_nopools_lma(model_id)[0]]) pool_chain = rwb.readbinarymat(output_dir + 'poolfile_' + file.partition(cbr_dir)[-1][:-3]+'bin', [cbf_pixel['nodays']+1, autil.get_nofluxes_nopools_lma(model_id)[1]]) # add chain to list for GR calculation if np.shape(cbr_chain)[0]==ens_size: cbr_chain_list.append(cbr_chain) # add forward run chain to aggregated matrix flux_pixel = np.copy(flux_chain) if best_chains.index(chain)==0 else np.concatenate((flux_pixel, flux_chain), axis=0) pool_pixel = np.copy(pool_chain) if best_chains.index(chain)==0 else np.concatenate((pool_pixel, pool_chain), axis=0) # compute gelman rubin if len(cbr_chain_list)>1: gr = autil.gelman_rubin(cbr_chain_list) print('%i of %i parameters converged' % (sum(gr<1.2), len(parnames))) else: gr = np.nan cbr_pixel = np.vstack(cbr_chain_list) print(pool_pixel.shape) print(cbr_pixel.shape) # nbe, lai, and abgb predictions at pixel # list with elements corresponding to MCMCIDs considered (e.g. first element is MCMCID 119) nbe_pred.append(autil.get_output('NBE', model_id, flux_pixel, pool_pixel, cbr_pixel, autil.get_nofluxes_nopools_lma(model_id)[2])) lai_pred.append(autil.get_output('LAI', model_id, flux_pixel, pool_pixel, cbr_pixel, autil.get_nofluxes_nopools_lma(model_id)[2])[:,:-1]) abgb_pred.append(autil.get_output('ABGB', model_id, flux_pixel, pool_pixel, cbr_pixel, autil.get_nofluxes_nopools_lma(model_id)[2])[:,:-1]) gpp_pred.append(autil.get_output('GPP', model_id, flux_pixel, pool_pixel, cbr_pixel, autil.get_nofluxes_nopools_lma(model_id)[2])) # plot time series lbls = [model_id+'_MCMC'+mcmc_id for model_id, mcmc_id in zip(model_ids, mcmc_ids)] plot_output_ts(cbf_pixel, nbe_pred, nbe_obs, nbe_an_unc, lbls=lbls, var='NBE', savepath=cur_dir+plot_dir+'demcmc_mcmc/', title='all_models'+'_NBE_'+pixel+'.png') plot_output_ts(cbf_pixel, lai_pred, lai_obs, lai_unc, lbls=lbls, var='LAI', savepath=cur_dir+plot_dir+'demcmc_mcmc/', title='all_models'+'_LAI_'+pixel+'.png') plot_output_ts(cbf_pixel, gpp_pred, sif_obs, 0, lbls=lbls, var='GPP', savepath=cur_dir+plot_dir+'demcmc_mcmc/', title='all_models'+'_GPP_'+pixel+'.png') # plot box plots plot_dist_compare(nbe_pred, nbe_obs, [nbe_an_unc, nbe_seas_unc], lbls=lbls, var='NBE', savepath=cur_dir+plot_dir+'demcmc_mcmc/', title='all_models'+'_NBE_'+pixel+'_dist_') plot_dist_compare(lai_pred, lai_obs, lai_unc, lbls=lbls, var='LAI', savepath=cur_dir+plot_dir+'demcmc_mcmc/', title='all_models'+'_LAI_'+pixel+'_dist_') plot_dist_compare(abgb_pred, abgb_obs, abgb_unc, lbls=lbls, var='ABGB', savepath=cur_dir+plot_dir+'demcmc_mcmc/', title='all_models'+'_ABGB_'+pixel+'_dist_') # plot obs vs median comparison nbe_mae.append([mae_real_numbers_only(f, nbe_obs)[0] for f in nbe_pred]) lai_mae.append([mae_real_numbers_only(f, lai_obs)[0] for f in lai_pred]) abgb_mae.append([mae_real_numbers_only(f, abgb_obs)[0] for f in abgb_pred]) print(rank_mae(nbe_mae, lbls)) print(rank_mae(lai_mae, lbls)) print(rank_mae(abgb_mae, lbls)) plot_maes(nbe_mae, pixels, savepath=cur_dir+plot_dir+'demcmc_mcmc/', title='all_models_NBE_mae') plot_maes(lai_mae, pixels, savepath=cur_dir+plot_dir+'demcmc_mcmc/', title='all_models_LAI_mae') plot_maes(abgb_mae, pixels, savepath=cur_dir+plot_dir+'demcmc_mcmc/', title='all_models_ABGB_mae') return
def main(): cur_dir = os.getcwd() + '/' plot_dir = '../../../../../../scratch/users/cfamigli/cardamom/plots/' os.chdir(plot_dir + 'dists/') # get list of model ids models_full = list(set([el.split('_')[0] for el in glob.glob('*.png')])) # remove 101, temporary until 102-->101 models_full.remove('102') os.chdir(cur_dir) # set lists of variables and pixels vrs = [ 'NBE', 'cumNBE', 'LAI', 'GPP', 'Reco', 'Rauto', 'Rhet', 'lit', 'root', 'som', 'wood' ] pixels = [ '3809', '3524', '2224', '4170', '1945', '3813', '4054', '3264', '1271', '3457' ] # set MCMC ID mcmc_id = sys.argv[1] n_iter = sys.argv[2] assim_type = '_longadapted' nmodels_leave_out = sys.argv[3] models = random.sample(models_full, len(models_full) - int(nmodels_leave_out)) print(models) # dataframe will hold model structural uncertainty (Ms) and model parametric uncertainty (Mp) for each pixel-var combination # n is number of models that make up the suite partitioning = DataFrame(columns={'Ms', 'Mp', 'n'}) df_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/processed_df/' for var in vrs: print('Variable: ' + var) Mp_pixels = np.zeros( len(pixels)) * np.nan # list of Mp for each pixel, for mapping for pixel in pixels: print('Pixel: ' + pixel) nsteps = 228 if assim_type == '_longadapted' else 240 meds, ub, lb = np.zeros((len(models), nsteps)) * np.nan, np.zeros( (len(models), nsteps) ) * np.nan, np.zeros( (len(models), nsteps) ) * np.nan # medians, upper bounds, lower bounds of prediction through time Mp, n = 0, 0 for model in models: print(model) cbf_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/cbf' + assim_type + '/' + model + '/' cbr_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/cbr' + assim_type + '/' + model + '/' output_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/output' + assim_type + '/' + model + '/' parnames = autil.get_parnames(cur_dir + '../../misc/', model) os.chdir(cur_dir + cbr_dir) #files = set(glob.glob('*.cbr')) - set(glob.glob('*MCMC'+mcmc_id+'*.cbr')) #files = glob.glob('*MCMC'+mcmc_id+'*.cbr') files = set( glob.glob('*MCMC' + mcmc_id + '_' + n_iter + '_*.cbr')) pixel_chains = autil.find_all_chains( files, pixel ) # list of files corresponding to each chain at that pixel, e.g. 2224_1, 2224_2, 2224_3, 2222_4 pixel_chains.sort() n_chains = len(pixel_chains) if n_chains > 0: cbf_pixel = rwb.read_cbf_file( cur_dir + cbf_dir + pixel_chains[0].partition('_MCMC')[0] + '_' + pixel + '.cbf') cbr_chain_list = [] for pixel_chain in pixel_chains: print(pixel_chain) cbr_chain = rwb.read_cbr_file( pixel_chain, {'nopars': len(parnames) }) # cbr file for one chain cbr_chain_list.append( cbr_chain ) # list of separate cbrs for each chain, use for gelman rubin cbr_pixel = np.copy(cbr_chain) if pixel_chains.index( pixel_chain) == 0 else np.concatenate( (cbr_pixel, cbr_chain), axis=0) # concatenate all chain cbrs #autil.plot_par_histograms(cbr_chain, parnames=parnames, savepath=cur_dir+plot_dir+'dists/', title=model+'_'+pixel_chain[:-3]+'png') flux_chain = rwb.readbinarymat( cur_dir + output_dir + 'fluxfile_' + pixel_chain[:-3] + 'bin', [ cbf_pixel['nodays'], autil.get_nofluxes_nopools_lma(model)[0] ]) pool_chain = rwb.readbinarymat( cur_dir + output_dir + 'poolfile_' + pixel_chain[:-3] + 'bin', [ cbf_pixel['nodays'] + 1, autil.get_nofluxes_nopools_lma(model)[1] ]) #autil.plot_flux_pool_timeseries(cbf_pixel, cbr_chain, flux_chain, pool_chain, autil.get_nofluxes_nopools_lma(model)[2], savepath=cur_dir+plot_dir+'timeseries/', title=model+'_'+pixel_chain[:-3]+'png') flux_pixel = np.copy(flux_chain) if pixel_chains.index( pixel_chain) == 0 else np.concatenate( (flux_pixel, flux_chain), axis=0) # concatenate all chain flux outputs pool_pixel = np.copy(pool_chain) if pixel_chains.index( pixel_chain) == 0 else np.concatenate( (pool_pixel, pool_chain), axis=0) # concatenate all chain pool outputs gr = autil.gelman_rubin( cbr_chain_list) # gelman rubin function from matt gr_thresh = 1.2 # below this value parameters are assumed to be convergent print('%i of %i parameters converged with GR<%.1f' % (sum(gr < gr_thresh), len(parnames), gr_thresh)) #autil.plot_par_histograms(cbr_pixel, parnames=parnames, savepath=cur_dir+plot_dir+'dists/', title=model+'_'+pixel_chain[:-6]+'.png') #autil.plot_flux_pool_timeseries(cbf_pixel, cbr_pixel, flux_pixel, pool_pixel, autil.get_nofluxes_nopools_lma(model)[2], savepath=cur_dir+plot_dir+'timeseries/', title=model+'_'+pixel_chain[:-6]+'.png') if (sum(gr < gr_thresh) / len(parnames) < .9 ): # don't include nonconvergent runs in analysis continue else: fwd_data = autil.get_output( var, model, flux_pixel, pool_pixel, cbr_pixel, autil.get_nofluxes_nopools_lma( model)[2]) # get forward data for var if len(fwd_data) > 0: if fwd_data.shape[1] > nsteps: fwd_data = fwd_data[:, :-1] fwd_data = autil.remove_outliers(fwd_data) # fill medians, upper bounds, and lower bounds meds[models.index(model), :] = np.nanmedian( fwd_data, axis=0) ub[models.index(model), :] = np.nanpercentile( fwd_data, 75, axis=0) lb[models.index(model), :] = np.nanpercentile( fwd_data, 25, axis=0) fwd_data = autil.remove_below_25_above_75( fwd_data ) # set values outside of 25th-75th range to nan Mp += np.nanvar( fwd_data, axis=0 ) # sum of intra-ensemble variance, only compute on 25th-75th n += 1 Ms = np.nanvar(meds, axis=0) # inter-median variance Mp = Mp / n if n != 0 else float('nan') Ms_div_sum = Ms / (Ms + Mp) Mp_div_sum = Mp / (Ms + Mp) partitioning.loc[pixel + '_' + var] = { 'Ms': np.nanmean(Ms_div_sum), 'Mp': np.nanmean(Mp_div_sum), 'n': n } Mp_pixels[pixels.index(pixel)] = np.nanmean(Mp_div_sum) print(partitioning.to_string()) partitioning.sort_index( axis=1).to_pickle(cur_dir + df_dir + 'summary' + assim_type + '_MCMC' + mcmc_id + '_' + date.today().strftime("%m%d%y") + '_' + str(len(models)) + '.pkl') return
def main(): # set run information to read model_id = sys.argv[1] mcmc_id = sys.argv[2] # 119 for normal, 3 for DEMCMC n_iter = sys.argv[3] nbe_optimization = sys.argv[4] # 'OFF' or 'ON' ens_size = 500 assim_type = sys.argv[5] # set directories cur_dir = os.getcwd() + '/' misc_dir = cur_dir + '../../misc/' cbf_dir = cur_dir + '../../../../../../scratch/users/cfamigli/cardamom/files/cbf' + assim_type + '/' + model_id + '/' cbr_opt_dir = cur_dir + '../../../../../../scratch/users/cfamigli/cardamom/files/cbr' + assim_type + '/' + model_id + '/' cbr_ef_dir = cur_dir + '../../../../../../scratch/users/cfamigli/cardamom/files/cbr' + assim_type + '_ef/' + model_id + '/' cbr_pft_dir = cur_dir + '../../../../../../scratch/users/cfamigli/cardamom/files/cbr' + assim_type + '_pft/' + model_id + '/' output_opt_dir = cur_dir + '../../../../../../scratch/users/cfamigli/cardamom/files/output' + assim_type + '/' + model_id + '/' output_ef_dir = cur_dir + '../../../../../../scratch/users/cfamigli/cardamom/files/output' + assim_type + '_ef/' + model_id + '/' output_pft_dir = cur_dir + '../../../../../../scratch/users/cfamigli/cardamom/files/output' + assim_type + '_pft/' + model_id + '/' plot_dir = cur_dir + '../../../../../../../scratch/users/cfamigli/cardamom/plots/' parnames = autil.get_parnames('../../misc/', model_id) # get list of cbfs os.chdir(cbf_dir) cbf_files = glob.glob('*.cbf') cbf_files.sort() pixel_lst = [] os.chdir(cur_dir + '/../') # initialize lists for error maps card_unc, opt_obs_err, pft_obs_err, ef_obs_err, obs_std = np.zeros( len(cbf_files)) * np.nan, np.zeros(len(cbf_files)) * np.nan, np.zeros( len(cbf_files)) * np.nan, np.zeros( len(cbf_files)) * np.nan, np.zeros(len(cbf_files)) * np.nan opt_pft_trend, opt_ef_trend, opt_pft_seas, opt_ef_seas, opt_mean, pft_mean, ef_mean = np.zeros( len(cbf_files)) * np.nan, np.zeros(len(cbf_files)) * np.nan, np.zeros( len(cbf_files)) * np.nan, np.zeros( len(cbf_files)) * np.nan, np.zeros( len(cbf_files)) * np.nan, np.zeros( len(cbf_files)) * np.nan, np.zeros( len(cbf_files)) * np.nan pft_mean_within_opt_unc, ef_mean_within_opt_unc = np.zeros( len(cbf_files)) * np.nan, np.zeros(len(cbf_files)) * np.nan ################################################## iterate through pixels ################################################## ############################################################################################################################ include_ef = True include_pft = True include_opt = True write_txt_sh_pft_rerun = True # initialize n_fluxes = autil.get_nofluxes_nopools_lma(model_id)[0] n_pools = autil.get_nofluxes_nopools_lma(model_id)[1] # load list of globcover labels gl_lbls = list( read_csv(misc_dir + 'Globcover2009_Legend.csv')['Value'].values) n_classes = len(gl_lbls) # load globcover csv for av_fracs determination gl_fracs = read_csv(misc_dir + 'globcover_fracs.csv', header=0) # load bestchains for cbr_files conv_chains = read_pickle(cbr_opt_dir + model_id + assim_type + '_ALL' + '_MCMC' + mcmc_id + '_' + n_iter + '_best_subset.pkl') conv_chains.columns = ['pixel', 'bestchains', 'conv'] #rename columns for easier access # create csv to track pft reruns pft_rerun_filename = 'pft_rerun_' + model_id + assim_type + '_MCMC' + mcmc_id + '_' + n_iter + '.csv' pft_rerun = open(misc_dir + pft_rerun_filename, 'w') w = csv.writer(pft_rerun) # run through all pixels for cbf_file in cbf_files: ind = cbf_files.index(cbf_file) pixel = cbf_file[-8:-4] pixel_lst.append(pixel) print(pixel) # read in fracs and types for pixel if int(pixel) in gl_fracs['pixel'].values: fracs_at_pixel = gl_fracs.loc[gl_fracs['pixel'] == int( pixel)].values[0][1:] types_at_pixel = get_types_at_pixel(gl_fracs, pixel) else: fracs_at_pixel = np.zeros(len(gl_lbls)) types_at_pixel = [] # read in cbf cbf_pixel = rwb.read_cbf_file(cbf_dir + cbf_file) nsteps = cbf_pixel['nodays'] ################################################## get PFT forward runs ################################################## ########################################################################################################################## can_plot_pft = False if include_pft: pixel_rerun = [] pft_spec = '5rp_' # initialize matrices to hold weighted average of fluxes and pools flux_pft_pixel = np.zeros((1, nsteps, n_fluxes)) pool_pft_pixel = np.zeros((1, nsteps + 1, n_pools)) #flux_pft_pixel = np.zeros((ens_size, nsteps, n_fluxes)) #pool_pft_pixel = np.zeros((ens_size, nsteps+1, n_pools)) # read all forward runs (each pft's run) for a given pixel print(types_at_pixel) for pft in types_at_pixel: suffix = cbf_file[:-9] + '_MCMC' + mcmc_id + '_' + n_iter + '_PFT' + str( int(pft) ) + '_forward_' + pixel + '.bin' #cbf_file[:-8]+'MCMC'+mcmc_id+'_'+n_iter+'_PFT'+str(int(pft))+'_'+pixel+'.bin' if (len(glob.glob(output_pft_dir + 'fluxfile_' + suffix)) > 0 ) & (len(glob.glob(output_pft_dir + 'poolfile_' + suffix)) > 0): print(str(int(pft))) flux_pft = rwb.readbinarymat( output_pft_dir + 'fluxfile_' + suffix, [nsteps, n_fluxes]) pool_pft = rwb.readbinarymat( output_pft_dir + 'poolfile_' + suffix, [nsteps + 1, n_pools]) #autil.plot_general_timeseries(autil.get_output('NBE', model_id, flux_pft, pool_pft, cbr_data=[], lma_ind=autil.get_nofluxes_nopools_lma(model_id)[2]), 'NBE', cbf_pixel, plot_dir+'timeseries/pft/', model_id + '_MCMC'+mcmc_id + '_'+n_iter + '_' + pixel + '_'+str(int(pft))+'.png') # add each flux and pool matrix (corresponding to each pft) according to pft fractions, as weighted average flux_pft[np.isnan(flux_pft)] = 0. pool_pft[np.isnan(pool_pft)] = 0. if (flux_pft.shape[0] > 0) & (pool_pft.shape[0] > 0): lbl_ind = gl_lbls.index(int(pft)) flux_pft_pixel += flux_pft * fracs_at_pixel[lbl_ind] pool_pft_pixel += pool_pft * fracs_at_pixel[lbl_ind] can_plot_pft = True else: pixel_rerun.append(pft) else: pixel_rerun.append(pft) if len(pixel_rerun) > 0: w.writerow([pixel] + pixel_rerun) ################################################ get optimal forward runs ################################################ ########################################################################################################################## can_plot_opt = False if include_opt: # get pixel's convergent chain numbers if pixel in conv_chains['pixel'].values: best_chains = conv_chains.loc[ conv_chains['pixel'] == pixel]['bestchains'].values[0][1:] flux_opt, pool_opt = [], [] # aggregate best chain outputs into one list for chain in best_chains: suffix = cbf_file[: -8] + 'MCMC' + mcmc_id + '_' + n_iter + '_' + pixel + '_' + chain + '.bin' if (len(glob.glob(output_opt_dir + 'fluxfile_' + suffix)) > 0) & (len( glob.glob(output_opt_dir + 'poolfile_' + suffix)) > 0): flux_opt.append( rwb.readbinarymat( output_opt_dir + 'fluxfile_' + suffix, [nsteps, n_fluxes])) pool_opt.append( rwb.readbinarymat( output_opt_dir + 'poolfile_' + suffix, [nsteps + 1, n_pools])) can_plot_opt = True # stack list elements for plotting flux_opt = np.vstack(flux_opt) pool_opt = np.vstack(pool_opt) ################################################### get EF forward runs ################################################### ########################################################################################################################### can_plot_ef = False if include_ef: ef_spec = 'clipped_PLS_soilgrids_poolobs_rescaled_forward_' # if 'wpolys' in ef_spec: use '_MCMC' # else: use 'MCMC' suffix = cbf_file[: -9] + '_MCMC' + mcmc_id + '_' + n_iter + '_' + ef_spec + pixel + '.bin' #cbf_file[:-8]+'MCMC'+mcmc_id+'_'+n_iter+'_EF_'+pixel+'.bin' if (len(glob.glob(output_ef_dir + 'fluxfile_' + suffix)) > 0) & ( len(glob.glob(output_ef_dir + 'poolfile_' + suffix)) > 0): flux_ef = rwb.readbinarymat( output_ef_dir + 'fluxfile_' + suffix, [nsteps, n_fluxes]) pool_ef = rwb.readbinarymat( output_ef_dir + 'poolfile_' + suffix, [nsteps + 1, n_pools]) can_plot_ef = True ##################################################### plot and compare #################################################### ########################################################################################################################### can_decompose = True if (can_plot_opt) & (can_plot_pft) & ( can_plot_ef) else False # plot optimal and pft predictions together output_opt = autil.get_output( 'NBE', model_id, flux_opt, pool_opt, cbr_data=[], lma_ind=autil.get_nofluxes_nopools_lma(model_id)[2]) if ( include_opt) & (can_plot_opt) else np.ones(nsteps) * np.nan output_pft = autil.get_output( 'NBE', model_id, flux_pft_pixel, pool_pft_pixel, cbr_data=[], lma_ind=autil.get_nofluxes_nopools_lma(model_id)[2]) if ( include_pft) & (can_plot_pft) else np.ones(nsteps) * np.nan output_ef = autil.get_output( 'NBE', model_id, flux_ef, pool_ef, cbr_data=[], lma_ind=autil.get_nofluxes_nopools_lma(model_id) [2]) if (include_ef) & (can_plot_ef) else np.ones(nsteps) * np.nan card_unc[ind], opt_obs_err[ind], pft_obs_err[ind], ef_obs_err[ ind], obs_std[ind] = autil.plot_opt_pft_ef_timeseries( output_opt, output_pft, output_ef, 'NBE', pixel, autil.rowcol_to_latlon([pixel]), cbf_pixel, err_v_obs=False, savepath=plot_dir + 'forward_compare/timeseries/' + model_id + '/', title=model_id + '_MCMC' + mcmc_id + '_' + n_iter + '_' + pft_spec + ef_spec + pixel + '.png') if can_decompose: opt_pft_trend[ind], opt_ef_trend[ind], opt_pft_seas[ ind], opt_ef_seas[ind], opt_mean[ind], pft_mean[ind], ef_mean[ ind], pft_mean_within_opt_unc[ind], ef_mean_within_opt_unc[ ind] = timeseries_decompose( output_opt, output_pft, output_ef, pixel, savepath=plot_dir + 'forward_compare/decomp/' + model_id + '/', savename=model_id + '_MCMC' + mcmc_id + '_' + n_iter + '_' + pft_spec + ef_spec + pixel) # close csv for rerun tracking pft_rerun.close() # plot decomposition results plot_decomposed( [opt_pft_trend, opt_ef_trend], [opt_pft_seas, opt_ef_seas], [opt_mean, pft_mean, ef_mean], [pft_mean_within_opt_unc, ef_mean_within_opt_unc], savepath=plot_dir + 'forward_compare/decomp/' + model_id + '/', savename=model_id + '_MCMC' + mcmc_id + '_' + n_iter + '_' + pft_spec + ef_spec) # plot error maps for data, plot_title, vmin, vmax in zip( [ card_unc, opt_obs_err, pft_obs_err, ef_obs_err, obs_std, opt_obs_err / obs_std, pft_obs_err / obs_std, ef_obs_err / obs_std, pft_obs_err / obs_std - opt_obs_err / obs_std, ef_obs_err / obs_std - opt_obs_err / obs_std, pft_obs_err / obs_std - ef_obs_err / obs_std ], [ 'opt_unc', 'opt_err', 'pft_err', 'ef_err', 'obs_std', 'norm_opt_err', 'norm_pft_err', 'norm_ef_err', 'norm_pft_minus_norm_opt_err', 'norm_ef_minus_norm_opt_err', 'norm_pft_minus_norm_ef_err' ], [0., 0., 0., 0., 0., 0., 0., 0., -1., -1., -1.], [0.7, 0.7, 0.7, 0.7, 0., 2., 2., 2., 1., 1., 1.]): data_nonan, pixel_lst_nonan = remove_nan(data, pixel_lst) stipple = card_unc if (plot_title == 'ef_err') | ( plot_title == 'pft_err') else None autil.plot_map( nrows=46, ncols=73, land_pixel_list=[file[-8:-4] for file in cbf_files], pixel_value_list=pixel_lst_nonan, value_list=data_nonan, vmin=vmin, vmax=vmax, cmap='bwr', savepath=plot_dir + 'forward_compare/maps/' + model_id + '/', savename=model_id + '_MCMC' + mcmc_id + '_' + n_iter + '_' + pft_spec + ef_spec + plot_title, stipple=stipple) #vmax=np.nanpercentile(data_nonan, 90) # save errors for comparison analysis DataFrame(list(zip(pixel_lst, list(ef_obs_err / obs_std))), columns=[ 'pixels', 'norm_mae' ]).to_pickle(misc_dir + 'mae_pkls/' + model_id + '_MCMC' + mcmc_id + '_' + n_iter + '_' + ef_spec + '.pkl') DataFrame(list(zip(pixel_lst, list(pft_obs_err / obs_std))), columns=[ 'pixels', 'norm_mae' ]).to_pickle(misc_dir + 'mae_pkls/' + model_id + '_MCMC' + mcmc_id + '_' + n_iter + '_' + pft_spec + '.pkl') # plot discrete map showing best parameterization (lowest error) for each pixel '''best_param_nonan, pixel_lst_nonan = best_param_nonancol([opt_obs_err, pft_obs_err, ef_obs_err], pixel_lst) autil.plot_map(nrows=46, ncols=73, land_pixel_list=[file[-8:-4] for file in cbf_files], pixel_value_list=pixel_lst_nonan, value_list=best_param_nonan, cmap=LinearSegmentedColormap.from_list('mycmap', [(0, 'dodgerblue'), (0.5, 'orangered'), (1., 'limegreen')]),savepath=plot_dir+'forward_compare/maps/'+model_id+'/', savename=model_id+'_MCMC'+mcmc_id+'_'+n_iter+'_'+ef_spec+'best_param')''' best_param_nonan, pixel_lst_nonan = best_param_nonancol( [pft_obs_err, ef_obs_err], pixel_lst) autil.plot_map( nrows=46, ncols=73, land_pixel_list=[file[-8:-4] for file in cbf_files], pixel_value_list=pixel_lst_nonan, value_list=best_param_nonan, cmap=LinearSegmentedColormap.from_list('mycmap', [(0, 'orangered'), (1., 'limegreen')]), savepath=plot_dir + 'forward_compare/maps/' + model_id + '/', savename=model_id + '_MCMC' + mcmc_id + '_' + n_iter + '_' + pft_spec + ef_spec + 'best_param') rgb_triplets = err_rgb_triplets([opt_obs_err, pft_obs_err, ef_obs_err], pixel_lst) autil.plot_map_rgb( nrows=46, ncols=73, land_pixel_list=[file[-8:-4] for file in cbf_files], pixel_value_list=pixel_lst, value_list=rgb_triplets, savepath=plot_dir + 'forward_compare/maps/' + model_id + '/', savename=model_id + '_MCMC' + mcmc_id + '_' + n_iter + '_' + pft_spec + ef_spec + 'rgb') ############################################### create resubmission for pft ############################################### ########################################################################################################################### if write_txt_sh_pft_rerun: # set additional directories mdf_dir = '../code/CARDAMOM_2.1.6c/C/projects/CARDAMOM_MDF/' if nbe_optimization == 'OFF' else '../code/CARDAMOM_Uma_2.1.6c-master/C/projects/CARDAMOM_MDF/' runmodel_dir = '../code/CARDAMOM_2.1.6c/C/projects/CARDAMOM_GENERAL/' if nbe_optimization == 'OFF' else '../code/CARDAMOM_Uma_2.1.6c-master/C/projects/CARDAMOM_GENERAL/' cbf_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/cbf' + assim_type + '/' + model_id + '/' cbf_pft_ic_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/cbf' + assim_type + '_pft_ic/' + model_id + '/' cbr_pft_dir = '../../../../../scratch/users/cfamigli/cardamom/files/cbr' + assim_type + '_pft/' + model_id + '/' output_dir = '../../../../../scratch/users/cfamigli/cardamom/files/output' + assim_type + '/' + model_id + '/' output_pft_dir = '../../../../../scratch/users/cfamigli/cardamom/files/output' + assim_type + '_pft/' + model_id + '/' if mcmc_id == '119': frac_save_out = str(int(int(n_iter) / 500)) elif mcmc_id == '3': frac_save_out = str( int(int(n_iter) / 500 * 100) ) # n_iterations/ frac_save_out * 100 will be ensemble size # set up which files to rerun pft_rerun = read_csv(misc_dir + pft_rerun_filename, header=None, sep=',', names=['pixel'] + gl_lbls) txt_filename = 'pft_ic_combined_list_' + model_id + assim_type + '_MCMC' + mcmc_id + '_' + n_iter + '_rerun.txt' txt_file = open(txt_filename, 'w') cl_count, row_count = 1, 0 for cbf_file in cbf_files: pixel = cbf_file[-8:-4] if int(pixel) in pft_rerun['pixel'].values: pixel_classes = pft_rerun.loc[pft_rerun['pixel'] == int( pixel)].values[0][1:] for cl in pixel_classes: if ~np.isnan(cl): f = cbf_file[:-9] + '_PFT' + str(int(cl)) + '_' + pixel txt_file.write( '%sCARDAMOM_MDF.exe %s%s %s%s %s 0 %s 0.001 %s 1000' % (mdf_dir, cbf_pft_ic_dir[3:], f + '.cbf', cbr_pft_dir, f + '.cbr', n_iter, frac_save_out, mcmc_id)) txt_file.write( ' && %sCARDAMOM_RUN_MODEL.exe %s%s %s%s %s%s %s%s %s%s %s%s' % (runmodel_dir, cbf_pft_ic_dir[3:], f + '.cbf', cbr_pft_dir, f + '.cbr', output_pft_dir, 'fluxfile_' + f + '.bin', output_pft_dir, 'poolfile_' + f + '.bin', output_pft_dir, 'edcdfile_' + f + '.bin', output_pft_dir, 'probfile_' + f + '.bin')) cl_count += 1 if np.mod(cl_count, 5) == 0: txt_file.write('\n') row_count += 1 else: txt_file.write(' && ') txt_file.close() sh_file = open(txt_filename[:-3] + 'sh', 'w') autil.fill_in_sh(sh_file, array_size=row_count, n_hours=10, txt_file=txt_filename, combined=True) return
def main(): ### set specifications model_id = sys.argv[1] run_type = 'ALL' mcmc_id = '119' n_iter = '40000000' ens_size = 500 assim_type = '_longadapted' ### set directories cur_dir = os.getcwd() + '/' cbf_dir = cur_dir + '../../../../../../scratch/users/cfamigli/cardamom/files/cbf'+assim_type+'/' + model_id + '/' cbr_dir = cur_dir + '../../../../../../scratch/users/cfamigli/cardamom/files/cbr'+assim_type+'/' + model_id + '/' output_dir = cur_dir + '../../../../../../scratch/users/cfamigli/cardamom/files/output'+assim_type+'/' + model_id + '/' plot_dir = cur_dir + '../../../../../../scratch/users/cfamigli/cardamom/plots/' parnames = autil.get_parnames(cur_dir + '../../misc/', model_id) # get list of cbfs os.chdir(cbf_dir) cbf_files = glob.glob('*.cbf') cbf_files.sort() os.chdir(cur_dir) # initialize lists of pixel names and rmses pixels_plot = [] nbe_rmse, lai_rmse = [], [] for cbf_file in cbf_files: print(cbf_file, cbf_files.index(cbf_file)) cbf_pixel = rwb.read_cbf_file(cbf_dir + cbf_file) pixel = cbf_file[-8:-4] cbr_files = glob.glob(cbr_dir + '*MCMC'+mcmc_id+'_'+n_iter+'_' + pixel + '_*.cbr') cbr_files = sorted(cbr_files, key=lambda x: int(x.partition(pixel+'_')[-1].partition('.cbr')[0])) # get all possible XX member combinations of cbr files n_chains_to_converge = 4 cbr_files_all_subsets = [list(i) for i in itertools.combinations(cbr_files, n_chains_to_converge)] continue_check = True for subset in cbr_files_all_subsets: if continue_check: # read parameters and compute gelman rubin cbr_chain_list = [] for cbr_file in subset: cbr_chain = rwb.read_cbr_file(cbr_file, {'nopars': len(parnames)}) cbr_chain = autil.modulus_Bday_Fday(cbr_chain, parnames) if np.shape(cbr_chain)[0]==ens_size: cbr_chain_list.append(cbr_chain) if len(cbr_chain_list)>1: gr = autil.gelman_rubin(cbr_chain_list) if sum(gr<1.2)/len(parnames)>=0.9: continue_check = False cbr_agg = np.vstack(cbr_chain_list) pixels_plot.append(pixel) best_subset = subset.copy() else: gr = np.nan # if there is a convergent subset, read fluxes and pools if not continue_check: convergent_chain_nums = [el.partition('.cbr')[0].partition(pixel)[-1][1:] for el in best_subset] convergent_files = [el.partition('.cbr')[0].partition(model_id+'/')[-1] for el in best_subset] flux_pixel = [] pool_pixel = [] for filename in convergent_files: flux_chain = rwb.readbinarymat(output_dir + 'fluxfile_' + filename+'.bin', [cbf_pixel['nodays'], autil.get_nofluxes_nopools_lma(model_id)[0]]) pool_chain = rwb.readbinarymat(output_dir + 'poolfile_' + filename+'.bin', [cbf_pixel['nodays']+1, autil.get_nofluxes_nopools_lma(model_id)[1]]) if (flux_chain.shape[0]==ens_size) & (pool_chain.shape[0]==ens_size): flux_pixel.append(flux_chain) pool_pixel.append(pool_chain) nbe_pred = autil.get_output('NBE', model_id, np.vstack(flux_pixel), np.vstack(pool_pixel), cbr_agg, autil.get_nofluxes_nopools_lma(model_id)[2]) lai_pred = autil.get_output('LAI', model_id, np.vstack(flux_pixel), np.vstack(pool_pixel), cbr_agg, autil.get_nofluxes_nopools_lma(model_id)[2]) nbe_obs, lai_obs = cbf_pixel['OBS']['NBE'], cbf_pixel['OBS']['LAI'] nbe_rmse.append(rmse_real_numbers_only(nbe_pred, nbe_obs)) lai_rmse.append(rmse_real_numbers_only(lai_pred, lai_obs)) print(rmse_real_numbers_only(nbe_pred, nbe_obs), rmse_real_numbers_only(lai_pred, lai_obs)) autil.plot_map(nrows=46, ncols=73, land_pixel_list=[file[-8:-4] for file in glob.glob(cbf_dir + '*.cbf')], pixel_value_list=pixels_plot, value_list=nbe_rmse, savepath=plot_dir+'maps/', savename='rmse_nbe_' + model_id + assim_type+ '_MCMC' + mcmc_id + '_' + n_iter) autil.plot_map(nrows=46, ncols=73, land_pixel_list=[file[-8:-4] for file in glob.glob(cbf_dir + '*.cbf')], pixel_value_list=pixels_plot, value_list=lai_rmse, savepath=plot_dir+'maps/', savename='rmse_lai_' + model_id + assim_type+ '_MCMC' + mcmc_id + '_' + n_iter) rmse_df = DataFrame(list(zip(pixels_plot, nbe_rmse, lai_rmse))) rmse_df.columns = ['pixel','nbe_rmse','lai_rmse'] rmse_df.to_pickle(cur_dir + '../../misc/rmse_' + model_id + assim_type+ '_MCMC' + mcmc_id + '_' + n_iter + '.pkl') ################################################################################################################################################################# # analyze regionally '''region_mask = Dataset(cur_dir + '../../misc/fourregion_maskarrays.nc') region_mask.set_auto_mask(False) regionmat, lat, lon = region_mask['4region'][:], region_mask['lat'][:], region_mask['lon'][:] lat[0] = -90 lat[-1] = 90 model_ids = ['811', '911'] rmse_dfs = [] for model_id in model_ids: rmse_df = read_pickle(cur_dir + '../../misc/rmse_' + model_id + assim_type+ '_MCMC' + mcmc_id + '_' + n_iter + '.pkl') rmse_df.columns = ['pixel','nbe_rmse','lai_rmse'] regions = [] for pixel in rmse_df[rmse_df.columns[0]].tolist(): pixlat, pixlon = rwb.rowcol_to_latlon(pixel) regions.append(regionmat[np.argwhere(lat==pixlat)[0][0], np.argwhere(lon==pixlon)[0][0]]) rmse_df.insert(loc=1, column='region', value=regions) rmse_dfs.append(rmse_df) print(rmse_dfs[0].groupby('region')['nbe_rmse'].mean(), rmse_dfs[0].groupby('region')['lai_rmse'].mean()) print(rmse_dfs[1].groupby('region')['nbe_rmse'].mean(), rmse_dfs[1].groupby('region')['lai_rmse'].mean())''' return
def main(): model_id = sys.argv[1] run_type = sys.argv[2] # ALL or SUBSET mcmc_id = sys.argv[3] # 119 for normal, 3 for DEMCMC n_iter = sys.argv[4] var_to_plot = sys.argv[5] # GR, a flux or pool, or PARXX ens_size = 500 assim_type = '_longadapted' cur_dir = os.getcwd() + '/' if 'scripts' not in cur_dir: cur_dir = cur_dir + 'scripts/' cbf_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/cbf'+assim_type+'/' + model_id + '/' cbr_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/cbr'+assim_type+'/' + model_id + '/' output_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/output'+assim_type+'/' + model_id + '/' plot_dir = '../../../../../../scratch/users/cfamigli/cardamom/plots/' parnames = autil.get_parnames(cur_dir + '../../misc/', model_id) os.chdir(cbr_dir) files = glob.glob('*MCMC'+mcmc_id+'_'+n_iter+'_*.cbr') pixel = sys.argv[6] print(pixel) pixel_chains = autil.find_all_chains(files, pixel) pixel_chains.sort() # filenames print(pixel_chains) cbf_pixel = rwb.read_cbf_file(cur_dir + cbf_dir + pixel_chains[0].partition('_MCMC')[0]+'_'+pixel+'.cbf') cbr_chain_list = [] for pixel_chain in pixel_chains: print(pixel_chain) cbr_chain = rwb.read_cbr_file(pixel_chain, {'nopars': len(parnames)}) cbr_pixel = np.copy(cbr_chain) if pixel_chains.index(pixel_chain)==0 else np.concatenate((cbr_pixel, cbr_chain), axis=0) flux_chain = rwb.readbinarymat(cur_dir + output_dir + 'fluxfile_' + pixel_chain[:-3]+'bin', [cbf_pixel['nodays'], autil.get_nofluxes_nopools_lma(model_id)[0]]) pool_chain = rwb.readbinarymat(cur_dir + output_dir + 'poolfile_' + pixel_chain[:-3]+'bin', [cbf_pixel['nodays']+1, autil.get_nofluxes_nopools_lma(model_id)[1]]) flux_pixel = np.copy(flux_chain) if pixel_chains.index(pixel_chain)==0 else np.concatenate((flux_pixel, flux_chain), axis=0) pool_pixel = np.copy(pool_chain) if pixel_chains.index(pixel_chain)==0 else np.concatenate((pool_pixel, pool_chain), axis=0) if np.shape(cbr_chain)[0]==ens_size: cbr_chain_list.append(cbr_chain) print(np.shape(cbr_chain)) ### COMPUTE GELMAN RUBIN if len(cbr_chain_list)>1: gr = autil.gelman_rubin(cbr_chain_list) gr_pixel = sum(gr<1.2)/len(parnames) else: gr_pixel = -9999. ### DETERMINE DATA TO WRITE TO FILE if var_to_plot == 'GR': data = np.copy(gr_pixel) elif 'PAR' in var_to_plot: parnum = int(var_to_plot.partition('PAR')[-1]) if gr_pixel>0.9: data = np.nanmedian(cbr_pixel[:,parnum-1]) else: data = -9999. else: if gr_pixel>0.9: data = np.nanmean(np.nanmedian(autil.get_output(var_to_plot, model_id, flux_pixel, pool_pixel, cbr_pixel, autil.get_nofluxes_nopools_lma(model_id)[2]), axis=0)) else: data = -9999. with open(cur_dir + '../../misc/' + model_id + '_' + pixel_chains[0].partition('_MCMC')[0] + '_MCMC' + mcmc_id + '_' + n_iter + '_' + var_to_plot + '.csv','a') as f: writer = csv.writer(f) new_row = [pixel, data] assert len(new_row)==2 writer.writerow(new_row) return
def main(): model_id_start = sys.argv[1] run_type = sys.argv[2] # ALL or SUBSET metric = sys.argv[3] # spread or RMSE assim_type = '_p25adapted' compare_between = sys.argv[4] # MCMCID or MODEL or NBEUNC n_iters = [ ['40000000'], ['40000000'] ] #['500000','1000000','2500000','5000000','10000000'],['40000000']]#[['100000', '250000', '500000', '1000000', '1750000', '2500000', '5000000'], ['100000', '250000', '500000', '1000000', '5000000', '10000000', '25000000','50000000']] vrs = [ 'NBE', 'cumNBE', 'LAI', 'GPP', 'Reco', 'Rauto', 'Rhet', 'lit', 'root', 'som', 'wood' ] pixels = [ '3809', '3524', '2224', '4170', '1945', '3813', '4054', '3264', '1271', '3457' ] cur_dir = os.getcwd() + '/' cbf_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/cbf' + assim_type + '/' + model_id_start + '/' cbr_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/cbr' + assim_type + '/' + model_id_start + '/' output_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/output' + assim_type + '/' + model_id_start + '/' plot_dir = '../../../../../../scratch/users/cfamigli/cardamom/plots/' parnames = autil.get_parnames('../../misc/', model_id_start) if compare_between == 'MCMCID': comps = ['3', '119'] elif compare_between == 'MODEL': comps = [model_id_start, '911'] mcmc_id = '119' elif compare_between == 'NBEUNC': comps = [assim_type, '_p25adapted_NBEuncreduced'] mcmc_id = '119' ens_spread = [ np.ones((len(pixels), len(vrs), len(n_iters[0]))) * float('nan'), np.ones((len(pixels), len(vrs), len(n_iters[1]))) * float('nan') ] conv = [ np.ones((len(pixels), len(n_iters[0]))) * float('nan'), np.ones((len(pixels), len(n_iters[1]))) * float('nan') ] for pixel in pixels: for comp in comps: if compare_between == 'MCMCID': mcmc_id = comp elif compare_between == 'MODEL': model_id_start = comp cbf_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/cbf' + assim_type + '/' + comp + '/' cbr_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/cbr' + assim_type + '/' + comp + '/' output_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/output' + assim_type + '/' + comp + '/' plot_dir = '../../../../../../scratch/users/cfamigli/cardamom/plots/' parnames = autil.get_parnames(cur_dir + '../../misc/', comp) elif compare_between == 'NBEUNC': assim_type = comp cbf_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/cbf' + comp + '/' + model_id_start + '/' cbr_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/cbr' + comp + '/' + model_id_start + '/' output_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/output' + comp + '/' + model_id_start + '/' plot_dir = '../../../../../../scratch/users/cfamigli/cardamom/plots/' parnames = autil.get_parnames(cur_dir + '../../misc/', model_id_start) os.chdir(cur_dir + cbr_dir) for it in n_iters[comps.index(comp)]: files = glob.glob('*MCMC' + mcmc_id + '_' + it + '_' + pixel + '*.cbr') pixel_chains = autil.find_all_chains(files, pixel) pixel_chains.sort() # filenames #if ((comp=='911') & (pixel_chains[0][-5]=='1')): pixel_chains.pop(0) #if ((comp=='911') & (pixel_chains[0][-5]=='2')): pixel_chains.pop(0) print(pixel_chains) cbf_pixel = rwb.read_cbf_file( cur_dir + cbf_dir + pixel_chains[0].partition('_MCMC')[0] + '_' + pixel + '.cbf') cbr_chain_list = [] for pixel_chain in pixel_chains[:4]: print(pixel_chain) cbr_chain = rwb.read_cbr_file(pixel_chain, {'nopars': len(parnames)}) cbr_pixel = np.copy(cbr_chain) if pixel_chains.index( pixel_chain) == 0 else np.concatenate( (cbr_pixel, cbr_chain), axis=0) flux_chain = rwb.readbinarymat( cur_dir + output_dir + 'fluxfile_' + pixel_chain[:-3] + 'bin', [ cbf_pixel['nodays'], autil.get_nofluxes_nopools_lma(model_id_start)[0] ]) pool_chain = rwb.readbinarymat( cur_dir + output_dir + 'poolfile_' + pixel_chain[:-3] + 'bin', [ cbf_pixel['nodays'] + 1, autil.get_nofluxes_nopools_lma(model_id_start)[1] ]) flux_pixel = np.copy(flux_chain) if pixel_chains.index( pixel_chain) == 0 else np.concatenate( (flux_pixel, flux_chain), axis=0) pool_pixel = np.copy(pool_chain) if pixel_chains.index( pixel_chain) == 0 else np.concatenate( (pool_pixel, pool_chain), axis=0) cbr_chain_list.append(cbr_chain) print(np.shape(cbr_chain)) print(np.shape(cbr_pixel)) gr = autil.gelman_rubin(cbr_chain_list) print('%i of %i parameters converged' % (sum(gr < 1.2), len(parnames))) conv[comps.index( comp)][pixels.index(pixel), n_iters[comps.index(comp)].index(it)] = sum( gr < 1.2) / len(parnames) * 100 for var in vrs: print(var) try: obs = cbf_pixel['OBS'][var] obs[obs == -9999] = float('nan') except: obs = np.ones(cbf_pixel['nodays']) * np.nan n_obs = np.sum(np.isfinite(obs)) fwd_data = autil.get_output( var, model_id_start, flux_pixel, pool_pixel, cbr_pixel, autil.get_nofluxes_nopools_lma(model_id_start)[2]) if len(fwd_data) > 0: if fwd_data.shape[1] > cbf_pixel['nodays']: fwd_data = fwd_data[:, :-1] fwd_data = autil.remove_outliers(fwd_data) med = np.nanmedian(fwd_data, axis=0) ub = np.nanpercentile(fwd_data, 75, axis=0) lb = np.nanpercentile(fwd_data, 25, axis=0) ens_spread[comps.index(comp)][ pixels.index(pixel), vrs.index(var), n_iters[comps.index(comp)].index(it)] = np.nanmean( abs(ub - lb)) if metric == 'spread' else np.sqrt( np.nansum((med - obs)**2) / n_obs) print(ens_spread[comps.index(comp)] [pixels.index(pixel), vrs.index(var), n_iters[comps.index(comp)].index(it)]) print(ens_spread) for var in vrs: autil.plot_spread_v_iter( ens_spread, pixels, vrs.index(var), var, n_iters, metric, cur_dir + plot_dir + 'spread_v_iter', 'iter_test' + assim_type + '_' + compare_between + '_' + model_id_start + '_' + var + '_' + metric, single_val=True ) #'iter_test_MCMC'+mcmc_id+'_'+model_id_start+'_'+var + '_' + metric) autil.plot_conv_v_iter(conv, pixels, n_iters, cur_dir + plot_dir + 'spread_v_iter', 'iter_test' + assim_type + '_' + compare_between + '_' + model_id_start + '_conv', single_val=True) return