default=500, help="How often (in terms of number of data points) to evaluate on dev." ) return parser if __name__ == '__main__': args = return_parser().parse_args() data = loader.read_data_sets( args.datadir, folders=['train', 'test', 'dev', 'user', 'item']) data.train.labels['ratings'] = loader.center(data.train.labels['ratings'], axis=None) data.dev.labels['ratings'] = loader.center(data.dev.labels['ratings'], axis=None) x = tree_model.tree(data, args.config, initrange=args.initrange, kfactors=args.kfactors, lamb=args.lamb, mb=args.mb, learnrate=args.learnrate, verbose=args.verbose, maxbadcount=args.maxbadcount, epochs=args.epochs, random_seed=args.random_seed, eval_rate=args.eval_rate) #print stuff here to file.
parser.add_argument("random_seed", metavar="RANDOM_SEED", type=int, help="For reproducible results.") parser.add_argument("eval_rate", metavar="EVAL_RATE", type=int, help="How often (in terms of number of data points) to evaluate on dev.") return parser if __name__ == '__main__': args = return_parser().parse_args() data = loader.read_data_sets(args.datadir, folders=['train', 'test', 'dev', 'user', 'item']) data.train.labels['ratings'] = loader.center(data.train.labels['ratings'], axis=None) data.dev.labels['ratings'] = loader.center(data.dev.labels['ratings'], axis=None) data.user.features['age'] = loader.center(data.user.features['age'], axis=None) data.item.features['year'] = loader.center(data.item.features['year'], axis=None) data.user.features['age'] = loader.maxnormalize(data.user.features['age']) data.item.features['year'] = loader.maxnormalize(data.item.features['year']) x = tree_model.tree(data, args.config,data, args.config, initrange=args.initrange, kfactors=args.kfactors, lamb =args.lamb, mb=args.mb, learnrate=args.learnrate, verbose=args.verbose, maxbadcount=args.maxbadcount, epochs=args.epochs, random_seed=args.random_seed, eval_rate=args.eval_rate) #print stuff here to file.
if __name__ == '__main__': args = return_parser().parse_args() data = loader.read_data_sets(args.datadir, folders=['train', 'dev', 'user', 'item']) data.train.labels['ratings'] = loader.center(data.train.labels['ratings']) data.dev.labels['ratings'] = loader.center(data.dev.labels['ratings']) data.user.features['age'] = loader.center(data.user.features['age'], axis=None) data.item.features['year'] = loader.center(data.item.features['year'], axis=None) data.user.features['age'] = loader.maxnormalize(data.user.features['age']) data.item.features['year'] = loader.maxnormalize( data.item.features['year']) data.show() print('=================mfmodel============================') x = mfmodel.mf(data, 'mf.config', epochs=1) print('=================treemodel============================') x2 = tree_model.tree(data, 'tree.config', epochs=1) print('=================dssmmodel============================') x3 = dssm_model.dssm(data, 'dssm.config', epochs=1) print('=================dnnconcat============================') x4 = dnn_concat_model.dnn_concat(data, 'dnn_concat.config', epochs=1) print('=================mult_dnn_concat============================') x5 = dnn_concat_model.dnn_concat(data, 'dnn_mult_concat.config', epochs=1) print('=================dsadd============================') x5 = dsaddmodel.dsadd(data, 'dssm.config', epochs=1) print('=================dssmrestricted============================') x6 = dssm_restricted_model(data, 'dssm.config', epochs=1)