Example #1
0
 def __init__(self,
              ants_image=[[0.0]],
              mask_ants=[[0.0]],
              **options):
     import ants
     self.atropos = ants.atropos(a = ants_image,
                                 x = mask_ants,
                                 **options)
    def __segmentation(self):
        logger.info("computing GM, WM, CSF segmentation")
        print("computing GM, WM, CSF segmentation")
        # https://antsx.github.io/ANTsPyNet/docs/build/html/utilities.html#applications

        priors = {
            "csf":
            os.path.join('./templates',
                         'mni_icbm152_csf_tal_nlin_sym_09a.nii.gz'),
            "gm":
            os.path.join('./templates',
                         'mni_icbm152_gm_tal_nlin_sym_09a.nii.gz'),
            "wm":
            os.path.join('./templates',
                         'mni_icbm152_wm_tal_nlin_sym_09a.nii.gz')
        }
        # list_of_priors = (ants.image_read(priors['csf']), ants.image_read(priors['gm']), ants.image_read(priors['wm']))

        if self._t1file != None and self._t2file != None:
            # segm = deep_atropos(self._t1_n4 * self._mask, do_preprocessing=False, use_spatial_priors=0, verbose=False)
            # self._segm = segm['segmentation_image']
            segm = ants.atropos(a=(self._t1_n4, self._t2_n4),
                                i='Kmeans[3]',
                                m='[0.2,1x1x1]',
                                c='[3,0]',
                                x=self._mask)
            self._segm = segm['segmentation']
            self._gm = np.where((self._segm.numpy() == 2), 1,
                                0).astype('float32')
            self._wm = np.where((self._segm.numpy() == 3), 1,
                                0).astype('float32')

        if self._t1file != None and self._t2file == None:
            # segm = deep_atropos(self._t1_n4 * self._mask, do_preprocessing=False, use_spatial_priors=0, verbose=False)
            # self._segm = segm['segmentation_image']
            segm = ants.atropos(a=self._t1_n4,
                                i='Kmeans[3]',
                                m='[0.2,1x1x1]',
                                c='[3,0]',
                                x=self._mask)
            self._segm = segm['segmentation']
            self._gm = np.where((self._segm.numpy() == 2), 1,
                                0).astype('float32')
            self._wm = np.where((self._segm.numpy() == 3), 1,
                                0).astype('float32')
Example #3
0
    def test_multiple_inputs(self):
        img = ants.image_read(ants.get_ants_data("r16"))
        img = ants.resample_image(img, (64, 64), 1, 0)
        mask = ants.get_mask(img)
        segs1 = ants.atropos(a=img,
                             m='[0.2,1x1]',
                             c='[2,0]',
                             i='kmeans[3]',
                             x=mask)

        # Use probabilities from k-means seg as priors
        segs2 = ants.atropos(a=img,
                             m='[0.2,1x1]',
                             c='[2,0]',
                             i=segs1['probabilityimages'],
                             x=mask)

        # multiple inputs
        feats = [img, ants.iMath(img, "Laplacian"), ants.iMath(img, "Grad")]
        segs3 = ants.atropos(a=feats,
                             m='[0.2,1x1]',
                             c='[2,0]',
                             i=segs1['probabilityimages'],
                             x=mask)
link = '/ROBEX_Output/'

# Skull stripped data output by ROBEX
mylist = os.listdir('/ROBEX_Output/')

# fixed image is the template to which the registration will be fitted found in the downloaded ANTs package
fixed = ants.image_read('/ANTsPy-master/data/mni.nii.gz')

# This runs the entire dataset through registration
for i in mylist:
    #registraction
    moving = ants.image_read('/arc/project/ex-rtam-1/BrainExt_AllData/' + i)
    mytx = ants.registration(fixed=fixed,
                             moving=moving,
                             type_of_transform='SyNAggro')
    mywarpedimage = ants.apply_transforms(fixed=fixed,
                                          moving=moving,
                                          transformlist=mytx['fwdtransforms'])
    mywarpedimage.to_file('/Output_ants_SyNAggro/Registration/' + i)

    #segmentation
    mask = ants.get_mask(mywarpedimage)
    img_seg = ants.atropos(a=mywarpedimage,
                           m='[0.2,1x1x1]',
                           c='[2,0]',
                           i='kmeans[3]',
                           x=mask)
    gm = img_seg['probabilityimages'][1]
    gm.to_file('/Output_ants_SyNAggro/Greymatter/' + i)
    continue
  os.mkdir( outputDirectory )

outputPrefix = outputDirectory + 'antspy'

numberOfOuterIterations = 5

image = ants.image_read( dataDirectory + 'KKI2009-01-MPRAGE_slice150.nii.gz', dimension = 2 )
mask = ants.image_read( dataDirectory + 'KKI2009-01-MPRAGE_slice150_mask.nii.gz', dimension = 2 )
weightMask = None

for i in range( numberOfOuterIterations ):
  print( "***************   N4 <---> Atropos iteration ", i, "  ******************\n" )
  n4Results = ants.n4_bias_field_correction( image, mask = mask,
    weight_mask = weightMask, verbose = True )
  image = n4Results
  atroposResults = ants.atropos( a = image, x = mask )
  onesImage = ants.make_image( image.shape, voxval = 0,
    spacing = ants.get_spacing( image ),
    origin = ants.get_origin( image ),
    direction = ants.get_direction( image ) )
  weightMask = atroposResults['probabilityimages'][1] *\
    ( onesImage - atroposResults['probabilityimages'][0] ) *\
    ( onesImage - atroposResults['probabilityimages'][2] ) +\
    atroposResults['probabilityimages'][2] *\
    ( onesImage - atroposResults['probabilityimages'][1] ) *\
    ( onesImage - atroposResults['probabilityimages'][0] )

ants.image_write( image, outputPrefix + "N4Corrected.nii.gz" )
ants.image_write( atroposResults['segmentation'], outputPrefix + "AtroposSegmentation.nii.gz" )

for i in range( len( atroposResults['probabilityimages'] ) ):
Example #6
0
 def test_example(self):
     # test ANTsPy/ANTsR example
     img = ants.image_read(ants.get_ants_data('r16'))
     img = ants.resample_image(img, (64, 64), 1, 0)
     mask = ants.get_mask(img)
     ants.atropos(a=img, m='[0.2,1x1]', c='[2,0]', i='kmeans[3]', x=mask)
Example #7
0
def longitudinal_cortical_thickness(t1s,
                                    initial_template="oasis",
                                    number_of_iterations=1,
                                    refinement_transform="antsRegistrationSyNQuick[a]",
                                    antsxnet_cache_directory=None,
                                    verbose=False):

    """
    Perform KellyKapowski cortical thickness longitudinally using \code{deepAtropos}
    for segmentation of the derived single-subject template.  It takes inspiration from
    the work described here:

    https://pubmed.ncbi.nlm.nih.gov/31356207/

    Arguments
    ---------
    t1s : list of ANTsImage
        Input list of 3-D unprocessed t1-weighted brain images from a single subject.

    initial_template : string or ANTsImage
        Input image to define the orientation of the SST.  Can be a string (see
        get_antsxnet_data) or a specified template.  This allows the user to create a
        SST outside of this routine.

    number_of_iterations : int
        Defines the number of iterations for refining the SST.

    refinement_transform : string
       Transform for defining the refinement registration transform. See options in
       ants.registration.

    antsxnet_cache_directory : string
        Destination directory for storing the downloaded template and model weights.
        Since these can be resused, if is None, these data will be downloaded to a
        ~/.keras/ANTsXNet/.

    verbose : boolean
        Print progress to the screen.

    Returns
    -------
    Cortical thickness image and segmentation probability images.

    Example
    -------
    >>> t1s = list()
    >>> t1s.append(ants.image_read("t1w_image.nii.gz"))
    >>> kk = longitudinal_cortical_thickness(image)
    """

    from ..utilities import get_antsxnet_data
    from ..utilities import preprocess_brain_image
    from ..utilities import deep_atropos

    ###################
    #
    #  Initial SST + optional affine refinement
    #
    ##################

    sst = None
    if isinstance(initial_template, str):
        template_file_name_path = get_antsxnet_data(initial_template, antsxnet_cache_directory=antsxnet_cache_directory)
        sst = ants.image_read(template_file_name_path)
    else:
        sst = initial_template

    for s in range(number_of_iterations):
        if verbose:
            print("Refinement iteration", s, "( out of", number_of_iterations, ")")

        sst_tmp = ants.image_clone(sst) * 0
        for i in range(len(t1s)):
            if verbose:
                print("***************************")
                print( "SST processing image", i, "( out of", len(t1s), ")")
                print( "***************************" )
            transform_type = "antsRegistrationSyNQuick[r]"
            if s > 0:
                transform_type = refinement_transform
            t1_preprocessed = preprocess_brain_image(t1s[i],
                truncate_intensity=(0.01, 0.99),
                do_brain_extraction=False,
                template=sst,
                template_transform_type=transform_type,
                do_bias_correction=False,
                do_denoising=False,
                intensity_normalization_type="01",
                antsxnet_cache_directory=antsxnet_cache_directory,
                verbose=verbose)
            sst_tmp += t1_preprocessed['preprocessed_image']

        sst = sst_tmp / len(t1s)

    ###################
    #
    #  Preprocessing and affine transform to final SST
    #
    ##################

    t1s_preprocessed = list()
    for i in range(len(t1s)):
        if verbose:
            print("***************************")
            print( "Final processing image", i, "( out of", len(t1s), ")")
            print( "***************************" )
        t1_preprocessed = preprocess_brain_image(t1s[i],
            truncate_intensity=(0.01, 0.99),
            do_brain_extraction=True,
            template=sst,
            template_transform_type="antsRegistrationSyNQuick[a]",
            do_bias_correction=True,
            do_denoising=True,
            intensity_normalization_type="01",
            antsxnet_cache_directory=antsxnet_cache_directory,
            verbose=verbose)
        t1s_preprocessed.append(t1_preprocessed)

    ###################
    #
    #  Deep  Atropos of SST for priors
    #
    ##################

    sst_atropos = deep_atropos(sst, do_preprocessing=True,
        antsxnet_cache_directory=antsxnet_cache_directory, verbose=verbose)

    ###################
    #
    #  Traditional Atropos + KK for each iamge
    #
    ##################

    return_list = list()
    for i in range(len(t1s_preprocessed)):
        if verbose:
            print("Atropos for image", i, "( out of", len(t1s), ")")
        atropos_output = ants.atropos(t1s_preprocessed[i]['preprocessed_image'],
            x=t1s_preprocessed[i]['brain_mask'], i=sst_atropos['probability_images'][1:7],
            m="[0.1,1x1x1]", c="[5,0]", priorweight=0.5, p="Socrates[1]", verbose=int(verbose))

        kk_segmentation = ants.image_clone(atropos_output['segmentation'])
        kk_segmentation[kk_segmentation == 4] = 3
        gray_matter = atropos_output['probabilityimages'][1]
        white_matter = atropos_output['probabilityimages'][2] + atropos_output['probabilityimages'][3]
        kk = ants.kelly_kapowski(s=kk_segmentation, g=gray_matter, w=white_matter,
            its=45, r=0.025, m=1.5, x=0, verbose=int(verbose))

        t1_dict = {'preprocessed_image' : t1s_preprocessed[i]['preprocessed_image'],
                   'thickness_image' : kk,
                   'segmentation_image' : atropos_output['segmentation'],
                   'csf_probability_image' : atropos_output['probabilityimages'][0],
                   'gray_matter_probability_image' : atropos_output['probabilityimages'][1],
                   'white_matter_probability_image' : atropos_output['probabilityimages'][2],
                   'deep_gray_matter_probability_image' : atropos_output['probabilityimages'][3],
                   'brain_stem_probability_image' : atropos_output['probabilityimages'][4],
                   'cerebellum_probability_image' : atropos_output['probabilityimages'][5],
                   'template_transforms' : t1s_preprocessed[i]['template_transforms']
                  }
        return_list.append(t1_dict)

    return_list.append(sst)

    return(return_list)