Example #1
0
    def test_timefile2netcdf(self):

        #Write txt time file
        root = 'timefile2netcdf'

        file_text = root + '.txt'
        fid = open(file_text, 'w')
        fid.write("""31/08/04 00:00:00, 1.328223 0 0
31/08/04 00:15:00, 1.292912 0 0
31/08/04 00:30:00, 1.292912 0 0
""")
        fid.flush()
        fid.close()

        # Expecting error to be raised
        try:
            timefile2netcdf(file_text, time_as_seconds=True)
        except DataTimeError:
            pass

        # Should pass
        timefile2netcdf(file_text)

        #os.remove(root+'.tms')
        os.remove(root + '.txt')
Example #2
0
    def test_timefile2netcdf_seconds(self):

        pass
        #Write txt time file
        root = 'timefile2netcdf_seconds'

        file_text = root + '.txt'
        fid = open(file_text, 'w')
        fid.write("""0.0, 1.328223 0 0
0.1, 1.292912 0
0.2, 1.292912 0 0
""")
        fid.flush()
        fid.close()

        # Expecting error to be raised
        try:
            timefile2netcdf(file_text)
        except:
            pass

        # Should pass
        timefile2netcdf(file_text, time_as_seconds=True)

        #os.remove(root+'.tms')
        os.remove(root + '.txt')
    def test_timefile2netcdf(self):

        #Write txt time file
        root = 'timefile2netcdf'

        file_text = root+'.txt'
        fid = open(file_text, 'w')
        fid.write(
"""31/08/04 00:00:00, 1.328223 0 0
31/08/04 00:15:00, 1.292912 0 0
31/08/04 00:30:00, 1.292912 0 0
""")
        fid.flush()
        fid.close()

        # Expecting error to be raised
        try:
            timefile2netcdf(file_text,time_as_seconds=True)
        except:
            pass

        # Should pass
        timefile2netcdf(file_text)

        #os.remove(root+'.tms')
        os.remove(root+'.txt')
    def test_rate_operator_rate_from_file(self):
        from anuga.config import rho_a, rho_w, eta_w
        from math import pi, cos, sin

        a = [0.0, 0.0]
        b = [0.0, 2.0]
        c = [2.0, 0.0]
        d = [0.0, 4.0]
        e = [2.0, 2.0]
        f = [4.0, 0.0]

        points = [a, b, c, d, e, f]
        #             bac,     bce,     ecf,     dbe
        vertices = [[1, 0, 2], [1, 2, 4], [4, 2, 5], [3, 1, 4]]

        #---------------------------------
        #Typical ASCII file
        #---------------------------------
        finaltime = 1200
        filename = 'test_file_function'
        fid = open(filename + '.txt', 'w')
        start = time.mktime(time.strptime('2000', '%Y'))
        dt = 60  #One minute intervals
        t = 0.0
        while t <= finaltime:
            t_string = time.strftime(time_format, time.gmtime(t + start))
            fid.write('%s, %f %f %f\n' %
                      (t_string, 2 * t, t**2, sin(t * pi / 600)))
            t += dt

        fid.close()

        #Convert ASCII file to NetCDF (Which is what we really like!)
        timefile2netcdf(filename + '.txt')

        #Create file function from time series
        F = file_function(
            filename + '.tms',
            quantities=['Attribute0', 'Attribute1', 'Attribute2'])

        #Now try interpolation
        for i in range(20):
            t = i * 10
            q = F(t)

            #Exact linear intpolation
            assert num.allclose(q[0], 2 * t)
            if i % 6 == 0:
                assert num.allclose(q[1], t**2)
                assert num.allclose(q[2], sin(t * pi / 600))

        #Check non-exact

        t = 90  #Halfway between 60 and 120
        q = F(t)
        assert num.allclose((120**2 + 60**2) / 2, q[1])
        assert num.allclose((sin(120 * pi / 600) + sin(60 * pi / 600)) / 2,
                            q[2])

        t = 100  #Two thirds of the way between between 60 and 120
        q = F(t)
        assert num.allclose(2 * 120**2 / 3 + 60**2 / 3, q[1])
        assert num.allclose(
            2 * sin(120 * pi / 600) / 3 + sin(60 * pi / 600) / 3, q[2])

        #os.remove(filename + '.txt')
        #os.remove(filename + '.tms')

        domain = Domain(points, vertices)

        #Flat surface with 1m of water
        domain.set_quantity('elevation', 0)
        domain.set_quantity('stage', 1.0)
        domain.set_quantity('friction', 0)

        Br = Reflective_boundary(domain)
        domain.set_boundary({'exterior': Br})

        #        print domain.quantities['elevation'].centroid_values
        #        print domain.quantities['stage'].centroid_values
        #        print domain.quantities['xmomentum'].centroid_values
        #        print domain.quantities['ymomentum'].centroid_values

        # Apply operator to these triangles
        indices = [0, 1, 3]

        rate = file_function('test_file_function.tms',
                             quantities=['Attribute1'])

        factor = 1000.0
        default_rate = 17.7

        operator = Rate_operator(domain, rate=rate, factor=factor, \
                      indices=indices, default_rate = default_rate)

        # Apply Operator
        domain.set_starttime(360.0)
        domain.timestep = 1.0

        operator()

        d = domain.get_time()**2 * factor + 1.0
        stage_ex0 = [d, d, 1., d]

        #        print d, domain.get_time(), F(360.0)

        #        print domain.quantities['elevation'].centroid_values
        #        print domain.quantities['stage'].centroid_values
        #        print domain.quantities['xmomentum'].centroid_values
        #        print domain.quantities['ymomentum'].centroid_values

        assert num.allclose(domain.quantities['stage'].centroid_values,
                            stage_ex0)
        assert num.allclose(domain.quantities['xmomentum'].centroid_values,
                            0.0)
        assert num.allclose(domain.quantities['ymomentum'].centroid_values,
                            0.0)
        assert num.allclose(domain.fractional_step_volume_integral,
                            ((d - 1.) * domain.areas[indices]).sum())

        domain.set_starttime(-10.0)
        domain.timestep = 1.0

        try:
            operator()
        except:
            pass
        else:
            raise Exception('Should have raised an exception, time too early')

        domain.set_starttime(1300.0)
        domain.timestep = 1.0

        operator()

        d = default_rate * factor + d
        stage_ex1 = [d, d, 1., d]

        #        print domain.quantities['elevation'].centroid_values
        #        print domain.quantities['stage'].centroid_values
        #        print domain.quantities['xmomentum'].centroid_values
        #        print domain.quantities['ymomentum'].centroid_values

        assert num.allclose(domain.quantities['stage'].centroid_values,
                            stage_ex1)
        assert num.allclose(domain.quantities['xmomentum'].centroid_values,
                            0.0)
        assert num.allclose(domain.quantities['ymomentum'].centroid_values,
                            0.0)
        assert num.allclose(domain.fractional_step_volume_integral,
                            ((d - 1.) * domain.areas[indices]).sum())
Example #5
0
    def test_rate_operator_rate_from_file(self):
        from anuga.config import rho_a, rho_w, eta_w
        from math import pi, cos, sin

        a = [0.0, 0.0]
        b = [0.0, 2.0]
        c = [2.0, 0.0]
        d = [0.0, 4.0]
        e = [2.0, 2.0]
        f = [4.0, 0.0]

        points = [a, b, c, d, e, f]
        #             bac,     bce,     ecf,     dbe
        vertices = [[1, 0, 2], [1, 2, 4], [4, 2, 5], [3, 1, 4]]

        #---------------------------------
        #Typical ASCII file
        #---------------------------------
        finaltime = 1200
        filename = 'test_file_function'
        fid = open(filename + '.txt', 'w')
        start = time.mktime(time.strptime('2000', '%Y'))
        dt = 60  #One minute intervals
        t = 0.0
        while t <= finaltime:
            t_string = time.strftime(time_format, time.gmtime(t + start))
            fid.write('%s, %f %f %f\n' %
                      (t_string, 2 * t, t**2, sin(old_div(t * pi, 600))))
            t += dt

        fid.close()

        #Convert ASCII file to NetCDF (Which is what we really like!)
        timefile2netcdf(filename + '.txt')

        #Create file function from time series
        F = file_function(
            filename + '.tms',
            quantities=['Attribute0', 'Attribute1', 'Attribute2'])

        #Now try interpolation
        for i in range(20):
            t = i * 10
            q = F(t)

            #Exact linear intpolation
            assert num.allclose(q[0], 2 * t)
            if i % 6 == 0:
                assert num.allclose(q[1], t**2)
                assert num.allclose(q[2], sin(old_div(t * pi, 600)))

        #Check non-exact

        t = 90  #Halfway between 60 and 120
        q = F(t)
        assert num.allclose(old_div((120**2 + 60**2), 2), q[1])
        assert num.allclose(
            old_div((sin(old_div(120 * pi, 600)) + sin(old_div(60 * pi, 600))),
                    2), q[2])

        t = 100  #Two thirds of the way between between 60 and 120
        q = F(t)
        assert num.allclose(old_div(2 * 120**2, 3) + old_div(60**2, 3), q[1])
        assert num.allclose(
            old_div(2 * sin(old_div(120 * pi, 600)), 3) +
            old_div(sin(old_div(60 * pi, 600)), 3), q[2])

        #os.remove(filename + '.txt')
        #os.remove(filename + '.tms')

        domain = Domain(points, vertices)

        #Flat surface with 1m of water
        domain.set_quantity('elevation', 0)
        domain.set_quantity('stage', 1.0)
        domain.set_quantity('friction', 0)

        Br = Reflective_boundary(domain)
        domain.set_boundary({'exterior': Br})

        #        print domain.quantities['elevation'].centroid_values
        #        print domain.quantities['stage'].centroid_values
        #        print domain.quantities['xmomentum'].centroid_values
        #        print domain.quantities['ymomentum'].centroid_values

        # Apply operator to these triangles
        indices = [0, 1, 3]

        rate = file_function(filename + '.tms', quantities=['Attribute1'])

        # Make starttime of domain consistent with tms file starttime
        domain.set_starttime(rate.starttime)

        factor = 1000.0
        default_rate = 17.7

        operator = Rate_operator(domain, rate=rate, factor=factor, \
                      indices=indices, default_rate = default_rate)

        # Apply Operator
        domain.set_time(360.0)
        domain.timestep = 1.0

        operator()

        d = domain.get_time()**2 * factor + 1.0
        stage_ex0 = [d, d, 1., d]

        #        print d, domain.get_time(), F(360.0)

        #        print domain.quantities['elevation'].centroid_values
        #        print domain.quantities['stage'].centroid_values
        #        print domain.quantities['xmomentum'].centroid_values
        #        print domain.quantities['ymomentum'].centroid_values

        assert num.allclose(domain.quantities['stage'].centroid_values,
                            stage_ex0)
        assert num.allclose(domain.quantities['xmomentum'].centroid_values,
                            0.0)
        assert num.allclose(domain.quantities['ymomentum'].centroid_values,
                            0.0)
        assert num.allclose(domain.fractional_step_volume_integral,
                            ((d - 1.) * domain.areas[indices]).sum())

        domain.set_time(1300.0)
        domain.timestep = 1.0

        operator()

        d = default_rate * factor + d
        stage_ex1 = [d, d, 1., d]

        #         print domain.quantities['elevation'].centroid_values
        #         print domain.quantities['stage'].centroid_values
        #         print domain.quantities['xmomentum'].centroid_values
        #         print domain.quantities['ymomentum'].centroid_values

        assert num.allclose(domain.quantities['stage'].centroid_values,
                            stage_ex1)
        assert num.allclose(domain.quantities['xmomentum'].centroid_values,
                            0.0)
        assert num.allclose(domain.quantities['ymomentum'].centroid_values,
                            0.0)
        assert num.allclose(domain.fractional_step_volume_integral,
                            ((d - 1.) * domain.areas[indices]).sum())

        tmp = numpy.zeros_like(domain.quantities['stage'].centroid_values)
        tmp[:] = domain.quantities['stage'].centroid_values

        d0 = domain.fractional_step_volume_integral

        domain.set_time(-10.0)
        domain.timestep = 1.0

        operator()

        d = default_rate * factor
        stage_ex2 = numpy.array([d, d, 0., d]) + numpy.array(stage_ex1)

        assert num.allclose(domain.quantities['stage'].centroid_values,
                            stage_ex2)
        assert num.allclose(domain.quantities['xmomentum'].centroid_values,
                            0.0)
        assert num.allclose(domain.quantities['ymomentum'].centroid_values,
                            0.0)
        assert num.allclose(domain.fractional_step_volume_integral,
                            d0 + (d * domain.areas[indices]).sum())

        # test timestepping_statistics
        stats = operator.timestepping_statistics()
        import re
        rr = re.findall("[-+]?[.]?[\d]+(?:,\d\d\d)*[\.]?\d*(?:[eE][-+]?\d+)?",
                        stats)
        assert num.allclose(float(rr[1]), 17.7)
        assert num.allclose(float(rr[2]), 106200.0)
    def test_rate_operator_rate_from_file(self):
        from anuga.config import rho_a, rho_w, eta_w
        from math import pi, cos, sin

        a = [0.0, 0.0]
        b = [0.0, 2.0]
        c = [2.0, 0.0]
        d = [0.0, 4.0]
        e = [2.0, 2.0]
        f = [4.0, 0.0]

        points = [a, b, c, d, e, f]
        #             bac,     bce,     ecf,     dbe
        vertices = [[1,0,2], [1,2,4], [4,2,5], [3,1,4]]


        #---------------------------------
        #Typical ASCII file
        #---------------------------------
        finaltime = 1200
        filename = 'test_file_function'
        fid = open(filename + '.txt', 'w')
        start = time.mktime(time.strptime('2000', '%Y'))
        dt = 60  #One minute intervals
        t = 0.0
        while t <= finaltime:
            t_string = time.strftime(time_format, time.gmtime(t+start))
            fid.write('%s, %f %f %f\n' %(t_string, 2*t, t**2, sin(t*pi/600)))
            t += dt

        fid.close()

        #Convert ASCII file to NetCDF (Which is what we really like!)
        timefile2netcdf(filename+'.txt')


        #Create file function from time series
        F = file_function(filename + '.tms',
                          quantities = ['Attribute0',
                                        'Attribute1',
                                        'Attribute2'])


        #Now try interpolation
        for i in range(20):
            t = i*10
            q = F(t)

            #Exact linear intpolation
            assert num.allclose(q[0], 2*t)
            if i%6 == 0:
                assert num.allclose(q[1], t**2)
                assert num.allclose(q[2], sin(t*pi/600))

        #Check non-exact

        t = 90 #Halfway between 60 and 120
        q = F(t)
        assert num.allclose( (120**2 + 60**2)/2, q[1] )
        assert num.allclose( (sin(120*pi/600) + sin(60*pi/600))/2, q[2] )


        t = 100 #Two thirds of the way between between 60 and 120
        q = F(t)
        assert num.allclose( 2*120**2/3 + 60**2/3, q[1] )
        assert num.allclose( 2*sin(120*pi/600)/3 + sin(60*pi/600)/3, q[2] )

        #os.remove(filename + '.txt')
        #os.remove(filename + '.tms')


        domain = Domain(points, vertices)

        #Flat surface with 1m of water
        domain.set_quantity('elevation', 0)
        domain.set_quantity('stage', 1.0)
        domain.set_quantity('friction', 0)

        Br = Reflective_boundary(domain)
        domain.set_boundary({'exterior': Br})

#        print domain.quantities['elevation'].centroid_values
#        print domain.quantities['stage'].centroid_values
#        print domain.quantities['xmomentum'].centroid_values
#        print domain.quantities['ymomentum'].centroid_values

        # Apply operator to these triangles
        indices = [0,1,3]


        rate = file_function(filename + '.tms', quantities=['Attribute1'])
        

        # Make starttime of domain consistent with tms file starttime
        domain.set_starttime(rate.starttime)
                    
        factor = 1000.0
        default_rate= 17.7

        operator = Rate_operator(domain, rate=rate, factor=factor, \
                      indices=indices, default_rate = default_rate)


        # Apply Operator
        domain.set_time(360.0)
        domain.timestep = 1.0

        operator()



        d = domain.get_time()**2 * factor + 1.0
        stage_ex0 = [ d,  d,   1.,  d]

#        print d, domain.get_time(), F(360.0)

#        print domain.quantities['elevation'].centroid_values
#        print domain.quantities['stage'].centroid_values
#        print domain.quantities['xmomentum'].centroid_values
#        print domain.quantities['ymomentum'].centroid_values

        assert num.allclose(domain.quantities['stage'].centroid_values, stage_ex0)
        assert num.allclose(domain.quantities['xmomentum'].centroid_values, 0.0)
        assert num.allclose(domain.quantities['ymomentum'].centroid_values, 0.0)
        assert num.allclose(domain.fractional_step_volume_integral, ((d-1.)*domain.areas[indices]).sum())


        domain.set_time(-10.0)
        domain.timestep = 1.0

        try:
            operator()
        except:
            pass
        else:
            raise Exception('Should have raised an exception, time too early')


        domain.set_time(1300.0)
        domain.timestep = 1.0

        operator()

        d = default_rate*factor + d
        stage_ex1 = [ d,  d,   1.,  d]

#        print domain.quantities['elevation'].centroid_values
#        print domain.quantities['stage'].centroid_values
#        print domain.quantities['xmomentum'].centroid_values
#        print domain.quantities['ymomentum'].centroid_values

        assert num.allclose(domain.quantities['stage'].centroid_values, stage_ex1)
        assert num.allclose(domain.quantities['xmomentum'].centroid_values, 0.0)
        assert num.allclose(domain.quantities['ymomentum'].centroid_values, 0.0)
        assert num.allclose(domain.fractional_step_volume_integral, ((d-1.)*domain.areas[indices]).sum())