def test_set_w_uh_vh_operator_time(self):
        from anuga.config import rho_a, rho_w, eta_w
        from math import pi, cos, sin

        a = [0.0, 0.0]
        b = [0.0, 2.0]
        c = [2.0, 0.0]
        d = [0.0, 4.0]
        e = [2.0, 2.0]
        f = [4.0, 0.0]

        points = [a, b, c, d, e, f]
        #             bac,     bce,     ecf,     dbe
        vertices = [[1, 0, 2], [1, 2, 4], [4, 2, 5], [3, 1, 4]]

        domain = Domain(points, vertices)

        #Flat surface with 1m of water
        domain.set_quantity('elevation', 0)
        domain.set_quantity('stage', 1.0)
        domain.set_quantity('xmomentum', 7.0)
        domain.set_quantity('ymomentum', 8.0)
        domain.set_quantity('friction', 0)

        Br = Reflective_boundary(domain)
        domain.set_boundary({'exterior': Br})

        #        print domain.quantities['w_uh_vh'].centroid_values
        #        print domain.quantities['xmomentum'].centroid_values
        #        print domain.quantities['ymomentum'].centroid_values

        # Apply operator to these triangles
        indices = [0, 1, 3]

        w_uh_vh = lambda t: [t, t + 1, t + 2]

        operator = Set_w_uh_vh_operator(domain,
                                        w_uh_vh=w_uh_vh,
                                        indices=indices)

        # Apply Operator
        domain.timestep = 2.0
        domain.time = 1.0
        operator()

        t = domain.time
        stage_ex = [t, t, 1., t]
        xmom_ex = [t + 1, t + 1, 7., t + 1]
        ymom_ex = [t + 2, t + 2, 8., t + 2]

        #print domain.quantities['stage'].centroid_values
        #print domain.quantities['xmomentum'].centroid_values
        #print domain.quantities['ymomentum'].centroid_values

        assert num.allclose(domain.quantities['stage'].centroid_values,
                            stage_ex)
        assert num.allclose(domain.quantities['xmomentum'].centroid_values,
                            xmom_ex)
        assert num.allclose(domain.quantities['ymomentum'].centroid_values,
                            ymom_ex)
Example #2
0
def sequential_distribute_load_pickle_file(pickle_name, np=1, verbose = False):
    """
    Open pickle files
    """

    f = open(pickle_name, 'rb')
    import pickle

    kwargs, points, vertices, boundary, quantities, boundary_map, \
                   domain_name, domain_dir, domain_store, domain_store_centroids, \
                   domain_minimum_storable_height, domain_minimum_allowed_height, \
                   domain_flow_algorithm, domain_georef, \
                   domain_quantities_to_be_stored, domain_smooth, \
                   domain_low_froude = pickle.load(f)
    f.close()

    for k in quantities:
        quantities[k] = num.load(quantities[k])
    points = num.load(points)
    vertices = num.load(vertices)

    #---------------------------------------------------------------------------
    # Create domain (parallel if np>1)
    #---------------------------------------------------------------------------
    if np>1:
        domain = Parallel_domain(points, vertices, boundary, **kwargs)
    else:
        domain = Domain(points, vertices, boundary, **kwargs)

    #------------------------------------------------------------------------
    # Copy in quantity data
    #------------------------------------------------------------------------
    for q in quantities:
        domain.set_quantity(q, quantities[q])


    #------------------------------------------------------------------------
    # Transfer boundary conditions to each subdomain
    #------------------------------------------------------------------------
    boundary_map['ghost'] = None  # Add binding to ghost boundary
    domain.set_boundary(boundary_map)


    #------------------------------------------------------------------------
    # Transfer other attributes to each subdomain
    #------------------------------------------------------------------------
    domain.set_name(domain_name)
    domain.set_datadir(domain_dir)
    domain.set_flow_algorithm(domain_flow_algorithm)
    domain.set_low_froude(domain_low_froude)
    domain.set_store(domain_store)
    domain.set_store_centroids(domain_store_centroids)
    domain.set_minimum_storable_height(domain_minimum_storable_height)
    domain.set_minimum_allowed_height(domain_minimum_allowed_height)
    domain.geo_reference = domain_georef
    domain.set_quantities_to_be_stored(domain_quantities_to_be_stored)
    domain.smooth = domain_smooth

    return domain
    def test_rate_operator_simple(self):
        from anuga.config import rho_a, rho_w, eta_w
        from math import pi, cos, sin

        a = [0.0, 0.0]
        b = [0.0, 2.0]
        c = [2.0, 0.0]
        d = [0.0, 4.0]
        e = [2.0, 2.0]
        f = [4.0, 0.0]

        points = [a, b, c, d, e, f]
        #             bac,     bce,     ecf,     dbe
        vertices = [[1, 0, 2], [1, 2, 4], [4, 2, 5], [3, 1, 4]]

        domain = Domain(points, vertices)

        #Flat surface with 1m of water
        domain.set_quantity('elevation', 0)
        domain.set_quantity('stage', 1.0)
        domain.set_quantity('friction', 0)

        Br = Reflective_boundary(domain)
        domain.set_boundary({'exterior': Br})

        #        print domain.quantities['stage'].centroid_values
        #        print domain.quantities['xmomentum'].centroid_values
        #        print domain.quantities['ymomentum'].centroid_values

        # Apply operator to these triangles
        indices = [0, 1, 3]

        rate = 1.0
        factor = 10.0
        default_rate = 0.0

        operator = Rate_operator(domain, rate=rate, factor=factor, \
                      indices=indices, default_rate = default_rate)

        # Apply Operator
        domain.timestep = 2.0
        operator()

        stage_ex = [21., 21., 1., 21.]

        #        print domain.quantities['stage'].centroid_values
        #        print domain.quantities['xmomentum'].centroid_values
        #        print domain.quantities['ymomentum'].centroid_values

        assert num.allclose(domain.quantities['stage'].centroid_values,
                            stage_ex)
        assert num.allclose(domain.quantities['xmomentum'].centroid_values,
                            0.0)
        assert num.allclose(domain.quantities['ymomentum'].centroid_values,
                            0.0)
        assert num.allclose(
            domain.fractional_step_volume_integral,
            factor * domain.timestep * (rate * domain.areas[indices]).sum())
Example #4
0
    def test_set_stage_operator_negative(self):
        from anuga.config import rho_a, rho_w, eta_w
        from math import pi, cos, sin

        a = [0.0, 0.0]
        b = [0.0, 2.0]
        c = [2.0, 0.0]
        d = [0.0, 4.0]
        e = [2.0, 2.0]
        f = [4.0, 0.0]

        points = [a, b, c, d, e, f]
        #             bac,     bce,     ecf,     dbe
        vertices = [[1, 0, 2], [1, 2, 4], [4, 2, 5], [3, 1, 4]]

        domain = Domain(points, vertices)

        #Flat surface with 1m of water
        domain.set_quantity('elevation', lambda x, y: -2 * x)
        domain.set_quantity('stage', 1.0)
        domain.set_quantity('friction', 0)

        Br = Reflective_boundary(domain)
        domain.set_boundary({'exterior': Br})

        #        print domain.quantities['elevation'].centroid_values
        #        print domain.quantities['stage'].centroid_values
        #        print domain.quantities['xmomentum'].centroid_values
        #        print domain.quantities['ymomentum'].centroid_values

        # Apply operator to these triangles
        indices = [0, 1, 3]

        #Catchment_Rain_Polygon = read_polygon(join('CatchmentBdy.csv'))
        #rainfall = file_function(join('1y120m.tms'), quantities=['rainfall'])
        stage = -5.0

        operator = Set_stage_operator(domain, stage=stage, indices=indices)

        # Apply Operator
        domain.timestep = 2.0
        operator()

        stage_ex = [-5., -5., 1., -5.]

        #print domain.quantities['elevation'].centroid_values
        #print domain.quantities['stage'].centroid_values
        #print domain.quantities['xmomentum'].centroid_values
        #print domain.quantities['ymomentum'].centroid_values

        assert num.allclose(domain.quantities['stage'].centroid_values,
                            stage_ex)
        assert num.allclose(domain.quantities['xmomentum'].centroid_values,
                            0.0)
        assert num.allclose(domain.quantities['ymomentum'].centroid_values,
                            0.0)
    def test_set_quantity_simple(self):
        from anuga.config import rho_a, rho_w, eta_w
        from math import pi, cos, sin

        a = [0.0, 0.0]
        b = [0.0, 2.0]
        c = [2.0, 0.0]
        d = [0.0, 4.0]
        e = [2.0, 2.0]
        f = [4.0, 0.0]

        points = [a, b, c, d, e, f]
        #             bac,     bce,     ecf,     dbe
        vertices = [[1, 0, 2], [1, 2, 4], [4, 2, 5], [3, 1, 4]]

        domain = Domain(points, vertices)

        #Flat surface with 1m of water
        domain.set_quantity('elevation', 0)
        domain.set_quantity('stage', 1.0)
        domain.set_quantity('friction', 0)

        Br = Reflective_boundary(domain)
        domain.set_boundary({'exterior': Br})

        #        print domain.quantities['stage'].centroid_values
        #        print domain.quantities['xmomentum'].centroid_values
        #        print domain.quantities['ymomentum'].centroid_values

        # Apply operator to these triangles
        indices = [0, 1, 3]

        stage = 3.0

        update_stage = Set_quantity(domain,
                                    "stage",
                                    value=stage,
                                    indices=indices,
                                    test_stage=False)

        # Apply Operator
        update_stage()

        stage_ex = [3., 3., 1., 3.]

        #print domain.quantities['stage'].centroid_values
        #print domain.quantities['xmomentum'].centroid_values
        #print domain.quantities['ymomentum'].centroid_values

        assert num.allclose(domain.quantities['stage'].centroid_values,
                            stage_ex)
        assert num.allclose(domain.quantities['xmomentum'].centroid_values,
                            0.0)
        assert num.allclose(domain.quantities['ymomentum'].centroid_values,
                            0.0)
Example #6
0
    def concept_ungenerateIII(self):
        from anuga import Domain, Reflective_boundary, \
                            Dirichlet_boundary
        from anuga.pmesh.mesh_interface import create_mesh_from_regions

        # These are the absolute values
        polygon = [[0, 0], [100, 0], [100, 100], [0, 100]]

        boundary_tags = {'wall': [0, 1, 3], 'wave': [2]}
        inner1_polygon = [[10, 10], [20, 10], [20, 20], [10, 20]]
        inner2_polygon = [[30, 30], [40, 30], [40, 40], [30, 40]]

        max_area = 1
        interior_regions = [(inner1_polygon, 5), (inner2_polygon, 10)]
        m = create_mesh_from_regions(polygon,
                                     boundary_tags,
                                     max_area,
                                     interior_regions=interior_regions)

        fileName = tempfile.mktemp('.txt')
        file = open(fileName, 'w')
        file.write('         1       ??      ??\n\
       90.0       90.0\n\
       81.0       90.0\n\
       81.0       81.0\n\
       90.0       81.0\n\
       90.0       90.0\n\
END\n\
         2      ?? ??\n\
       10.0       80.0\n\
       10.0       90.0\n\
       20.0       90.0\n\
       10.0       80.0\n\
END\n\
END\n')
        file.close()

        m.import_ungenerate_file(fileName)
        os.remove(fileName)
        m.generate_mesh(maximum_triangle_area=max_area, verbose=False)
        mesh_filename = 'mesh.tsh'
        m.export_mesh_file(mesh_filename)

        domain = Domain(mesh_filename, use_cache=False)

        Br = Reflective_boundary(domain)
        Bd = Dirichlet_boundary([3, 0, 0])
        domain.set_boundary({'wall': Br, 'wave': Bd})
        yieldstep = 0.1
        finaltime = 10
        for t in domain.evolve(yieldstep, finaltime):
            domain.write_time()
Example #7
0
    def test_slide_tsunami_domain(self):

        length = 600.0
        dep = 150.0
        th = 9.0
        thk = 15.0
        wid = 340.0
        kappa = 3.0
        kappad = 0.8
        x0 = 100000.
        y0 = x0

        from anuga.pmesh.mesh_interface import create_mesh_from_regions
        polygon = [[0, 0], [200000, 0], [200000, 200000], [0, 200000]]
        create_mesh_from_regions(polygon, {
            'e0': [0],
            'e1': [1],
            'e2': [2],
            'e3': [3]
        },
                                 maximum_triangle_area=5000000000,
                                 filename='test.msh',
                                 verbose=False)

        domain = Domain('test.msh', use_cache=True, verbose=False)

        slide = slide_tsunami(length, dep, th, x0, y0, \
                              wid, thk, kappa, kappad, \
                              domain=domain,verbose=False)

        domain.set_quantity('stage', slide)
        stage = domain.get_quantity('stage')
        w = stage.get_values()

        ##        check = [[-0.0 -0.0 -0.0],
        ##                 [-.189709745 -517.877716 -0.0],
        ##                 [-0.0 -0.0 -2.7695931e-08],
        ##                 [-0.0 -2.7695931e-08 -1.897097e-01]
        ##                 [-0.0 -517.877716 -0.0],
        ##                 [-0.0 -0.0 -0.0],
        ##                 [-0.0 -0.0 -0.0],
        ##                 [-0.0 -0.0 -0.0]]

        assert num.allclose(num.min(w), -517.877771593)
        assert num.allclose(num.max(w), 0.0)
        assert num.allclose(slide.a3D, 518.38797486)
def distibute_three_processors():
    """
    Do a parallel test of distributing a rectangle onto 3 processors

    """

    # FIXME: Need to update expected values on macos
    if sys.platform == 'darwin':
        return

    # FIXME: Need to update expected values on macos
    #if sys.platform == 'win32':
    #	return

    from anuga.utilities import parallel_abstraction as pypar

    myid = pypar.rank()
    numprocs = pypar.size()

    if not numprocs == 3:
        return

    try:
        import pymetis
        metis_version = 5
    except:
        metis_version = 4

    #print numprocs

    #barrier()

    if myid == 0:

        nodes_0, triangles_0, boundary_0 = rectangular_cross(2, 2)

        domain = Domain(nodes_0, triangles_0, boundary_0)

        domain.set_quantity('elevation',
                            topography)  # Use function for elevation
        domain.set_quantity('friction', 0.0)  # Constant friction
        domain.set_quantity('stage',
                            expression='elevation')  # Dry initial stage
        domain.set_quantity('xmomentum', expression='friction + 2.0')
        domain.set_quantity('ymomentum', ycoord)

        #----------------------------------------------------------------------------------
        # Test pmesh_divide_metis
        #----------------------------------------------------------------------------------
        vertices, triangles, boundary, triangles_per_proc, quantities = pmesh_divide_metis(
            domain, numprocs)

        if False:
            print_seq_values(vertices, triangles, triangles_per_proc)

        true_seq_values = get_true_seq_values(metis_version=metis_version)

        if False:
            print("True Seq Values = \\")
            pprint(true_seq_values)

        assert_allclose(vertices, true_seq_values['vertices'])
        assert_allclose(triangles, true_seq_values['triangles'])
        assert_allclose(triangles_per_proc,
                        true_seq_values['triangles_per_proc'])

        #----------------------------------------------------------------------------------
        # Test build_submesh
        #----------------------------------------------------------------------------------
        submesh = build_submesh(vertices, triangles, boundary, quantities,
                                triangles_per_proc)

        if False:
            print('submesh_values = \\')
            print_submesh_values(submesh)

        true_values = get_true_submesh_values(metis_version)

        assert_allclose(submesh['full_nodes'][0], true_values['full_nodes_0'])
        assert_allclose(submesh['full_nodes'][1], true_values['full_nodes_1'])
        assert_allclose(submesh['full_nodes'][2], true_values['full_nodes_2'])

        assert_allclose(submesh['ghost_nodes'][0],
                        true_values['ghost_nodes_0'])
        assert_allclose(submesh['ghost_nodes'][1],
                        true_values['ghost_nodes_1'])
        assert_allclose(submesh['ghost_nodes'][2],
                        true_values['ghost_nodes_2'])

        assert_allclose(submesh['full_triangles'][0],
                        true_values['full_triangles_0'])
        assert_allclose(submesh['full_triangles'][1],
                        true_values['full_triangles_1'])
        assert_allclose(submesh['full_triangles'][2],
                        true_values['full_triangles_2'])

        assert_allclose(submesh['ghost_triangles'][0],
                        true_values['ghost_triangles_0'])
        assert_allclose(submesh['ghost_triangles'][1],
                        true_values['ghost_triangles_1'])
        assert_allclose(submesh['ghost_triangles'][2],
                        true_values['ghost_triangles_2'])

        assert_allclose(submesh['ghost_commun'][0],
                        true_values['ghost_commun_0'])
        assert_allclose(submesh['ghost_commun'][1],
                        true_values['ghost_commun_1'])
        assert_allclose(submesh['ghost_commun'][2],
                        true_values['ghost_commun_2'])

        assert_(submesh['full_commun'] == true_values['full_commun'])

    barrier()
    #--------------------------------
    # Now do the comunnication part
    #--------------------------------

    if myid == 0:

        points, vertices, boundary, quantities, \
                    ghost_recv_dict, full_send_dict, tri_map, node_map, tri_l2g, node_l2g, \
                    ghost_layer_width =\
                    extract_submesh(submesh, triangles_per_proc)

        #----------------------------------------------------------------------------------
        # Test send_submesh
        #----------------------------------------------------------------------------------
        for p in range(1, numprocs):
            send_submesh(submesh, triangles_per_proc, p, verbose=False)
    else:
        #----------------------------------------------------------------------------------
        # Test rec_submesh
        #----------------------------------------------------------------------------------
        points, triangles, boundary, quantities, \
                ghost_recv_dict, full_send_dict, \
                no_full_nodes, no_full_trigs, tri_map, node_map, tri_l2g, node_l2g, \
                ghost_layer_width = \
                rec_submesh(0, verbose=False)

    barrier()

    #--------------------------------
    # Now do the test
    #--------------------------------
    if myid == 0:

        if False:
            print('extract_values = \\')
            print_extract_submesh(points, triangles, ghost_recv_dict, \
                                  full_send_dict, tri_map, node_map, ghost_layer_width)

        true_values = get_true_extract_submesh(metis_version)

        assert_allclose(points, true_values['points'])
        assert_allclose(triangles, true_values['triangles'])
        assert_allclose(ghost_recv_dict[1], true_values['ghost_recv_dict_1'])
        assert_allclose(ghost_recv_dict[2], true_values['ghost_recv_dict_2'])
        assert_allclose(full_send_dict[1], true_values['full_send_dict_1'])
        assert_allclose(full_send_dict[2], true_values['full_send_dict_2'])
        assert_allclose(tri_map, true_values['tri_map'])
        assert_allclose(node_map, true_values['node_map'])
        assert_allclose(ghost_layer_width, true_values['ghost_layer_width'])

    if myid == 1:

        if False:
            print("rec_submesh_1 = \\")
            print_rec_submesh_1(points, triangles, ghost_recv_dict, full_send_dict, \
                         tri_map, node_map, ghost_layer_width)

        true_values = get_true_rec_submesh_1(metis_version)

        if False:
            print('true_rec_values_1 = \\')
            pprint(true_values)

        assert_allclose(points, true_values['points'])
        assert_allclose(triangles, true_values['triangles'])
        assert_allclose(ghost_recv_dict[0], true_values['ghost_recv_dict_0'])
        assert_allclose(ghost_recv_dict[2], true_values['ghost_recv_dict_2'])
        assert_allclose(full_send_dict[0], true_values['full_send_dict_0'])
        assert_allclose(full_send_dict[2], true_values['full_send_dict_2'])
        assert_allclose(tri_map, true_values['tri_map'])
        assert_allclose(node_map, true_values['node_map'])
        assert_allclose(ghost_layer_width, true_values['ghost_layer_width'])

    if myid == 2:

        if False:
            print("rec_submesh_2 = \\")
            print_rec_submesh_2(points, triangles, ghost_recv_dict, full_send_dict, \
                         tri_map, node_map, ghost_layer_width)

        true_values = get_true_rec_submesh_2(metis_version)

        if False:
            print('true_rec_values_2 = \\')
            pprint(true_values)

        assert_allclose(points, true_values['points'])
        assert_allclose(triangles, true_values['triangles'])
        assert_allclose(ghost_recv_dict[0], true_values['ghost_recv_dict_0'])
        assert_allclose(ghost_recv_dict[1], true_values['ghost_recv_dict_1'])
        assert_allclose(full_send_dict[0], true_values['full_send_dict_0'])
        assert_allclose(full_send_dict[1], true_values['full_send_dict_1'])
        assert_allclose(tri_map, true_values['tri_map'])
        assert_allclose(node_map, true_values['node_map'])
        assert_allclose(ghost_layer_width, true_values['ghost_layer_width'])

    finalize()
    def test_rate_operator_functions_rate_default_rate(self):
        from anuga.config import rho_a, rho_w, eta_w
        from math import pi, cos, sin

        a = [0.0, 0.0]
        b = [0.0, 2.0]
        c = [2.0, 0.0]
        d = [0.0, 4.0]
        e = [2.0, 2.0]
        f = [4.0, 0.0]

        points = [a, b, c, d, e, f]
        #             bac,     bce,     ecf,     dbe
        vertices = [[1, 0, 2], [1, 2, 4], [4, 2, 5], [3, 1, 4]]

        domain = Domain(points, vertices)

        #Flat surface with 1m of water
        domain.set_quantity('elevation', 0)
        domain.set_quantity('stage', 1.0)
        domain.set_quantity('friction', 0)

        Br = Reflective_boundary(domain)
        domain.set_boundary({'exterior': Br})

        verbose = False

        if verbose:
            print domain.quantities['elevation'].centroid_values
            print domain.quantities['stage'].centroid_values
            print domain.quantities['xmomentum'].centroid_values
            print domain.quantities['ymomentum'].centroid_values

        # Apply operator to these triangles
        indices = [0, 1, 3]
        factor = 10.0

        def main_rate(t):
            if t > 20:
                msg = 'Model time exceeded.'
                raise Modeltime_too_late, msg
            else:
                return 3.0 * t + 7.0

        default_rate = lambda t: 3 * t + 7


        operator = Rate_operator(domain, rate=main_rate, factor=factor, \
                      indices=indices, default_rate = default_rate)

        # Apply Operator
        domain.timestep = 2.0
        operator()

        t = operator.get_time()
        d = operator.get_timestep() * main_rate(t) * factor + 1
        stage_ex = [d, d, 1., d]

        if verbose:
            print domain.quantities['elevation'].centroid_values
            print domain.quantities['stage'].centroid_values
            print domain.quantities['xmomentum'].centroid_values
            print domain.quantities['ymomentum'].centroid_values

        assert num.allclose(domain.quantities['stage'].centroid_values,
                            stage_ex)
        assert num.allclose(domain.quantities['xmomentum'].centroid_values,
                            0.0)
        assert num.allclose(domain.quantities['ymomentum'].centroid_values,
                            0.0)
        assert num.allclose(domain.fractional_step_volume_integral,
                            ((d - 1.) * domain.areas[indices]).sum())

        domain.set_starttime(30.0)
        domain.timestep = 1.0
        operator()

        t = operator.get_time()
        d = operator.get_timestep() * default_rate(t) * factor + d
        stage_ex = [d, d, 1., d]

        if verbose:
            print domain.quantities['elevation'].centroid_values
            print domain.quantities['stage'].centroid_values
            print domain.quantities['xmomentum'].centroid_values
            print domain.quantities['ymomentum'].centroid_values

        assert num.allclose(domain.quantities['stage'].centroid_values,
                            stage_ex)
        assert num.allclose(domain.quantities['xmomentum'].centroid_values,
                            0.0)
        assert num.allclose(domain.quantities['ymomentum'].centroid_values,
                            0.0)
Example #10
0
    def test_rate_operator_rate_from_file(self):
        from anuga.config import rho_a, rho_w, eta_w
        from math import pi, cos, sin

        a = [0.0, 0.0]
        b = [0.0, 2.0]
        c = [2.0, 0.0]
        d = [0.0, 4.0]
        e = [2.0, 2.0]
        f = [4.0, 0.0]

        points = [a, b, c, d, e, f]
        #             bac,     bce,     ecf,     dbe
        vertices = [[1, 0, 2], [1, 2, 4], [4, 2, 5], [3, 1, 4]]

        #---------------------------------
        #Typical ASCII file
        #---------------------------------
        finaltime = 1200
        filename = 'test_file_function'
        fid = open(filename + '.txt', 'w')
        start = time.mktime(time.strptime('2000', '%Y'))
        dt = 60  #One minute intervals
        t = 0.0
        while t <= finaltime:
            t_string = time.strftime(time_format, time.gmtime(t + start))
            fid.write('%s, %f %f %f\n' %
                      (t_string, 2 * t, t**2, sin(t * pi / 600)))
            t += dt

        fid.close()

        #Convert ASCII file to NetCDF (Which is what we really like!)
        timefile2netcdf(filename + '.txt')

        #Create file function from time series
        F = file_function(
            filename + '.tms',
            quantities=['Attribute0', 'Attribute1', 'Attribute2'])

        #Now try interpolation
        for i in range(20):
            t = i * 10
            q = F(t)

            #Exact linear intpolation
            assert num.allclose(q[0], 2 * t)
            if i % 6 == 0:
                assert num.allclose(q[1], t**2)
                assert num.allclose(q[2], sin(t * pi / 600))

        #Check non-exact

        t = 90  #Halfway between 60 and 120
        q = F(t)
        assert num.allclose((120**2 + 60**2) / 2, q[1])
        assert num.allclose((sin(120 * pi / 600) + sin(60 * pi / 600)) / 2,
                            q[2])

        t = 100  #Two thirds of the way between between 60 and 120
        q = F(t)
        assert num.allclose(2 * 120**2 / 3 + 60**2 / 3, q[1])
        assert num.allclose(
            2 * sin(120 * pi / 600) / 3 + sin(60 * pi / 600) / 3, q[2])

        #os.remove(filename + '.txt')
        #os.remove(filename + '.tms')

        domain = Domain(points, vertices)

        #Flat surface with 1m of water
        domain.set_quantity('elevation', 0)
        domain.set_quantity('stage', 1.0)
        domain.set_quantity('friction', 0)

        Br = Reflective_boundary(domain)
        domain.set_boundary({'exterior': Br})

        #        print domain.quantities['elevation'].centroid_values
        #        print domain.quantities['stage'].centroid_values
        #        print domain.quantities['xmomentum'].centroid_values
        #        print domain.quantities['ymomentum'].centroid_values

        # Apply operator to these triangles
        indices = [0, 1, 3]

        rate = file_function('test_file_function.tms',
                             quantities=['Attribute1'])

        factor = 1000.0
        default_rate = 17.7

        operator = Rate_operator(domain, rate=rate, factor=factor, \
                      indices=indices, default_rate = default_rate)

        # Apply Operator
        domain.set_starttime(360.0)
        domain.timestep = 1.0

        operator()

        d = domain.get_time()**2 * factor + 1.0
        stage_ex0 = [d, d, 1., d]

        #        print d, domain.get_time(), F(360.0)

        #        print domain.quantities['elevation'].centroid_values
        #        print domain.quantities['stage'].centroid_values
        #        print domain.quantities['xmomentum'].centroid_values
        #        print domain.quantities['ymomentum'].centroid_values

        assert num.allclose(domain.quantities['stage'].centroid_values,
                            stage_ex0)
        assert num.allclose(domain.quantities['xmomentum'].centroid_values,
                            0.0)
        assert num.allclose(domain.quantities['ymomentum'].centroid_values,
                            0.0)
        assert num.allclose(domain.fractional_step_volume_integral,
                            ((d - 1.) * domain.areas[indices]).sum())

        domain.set_starttime(-10.0)
        domain.timestep = 1.0

        try:
            operator()
        except:
            pass
        else:
            raise Exception('Should have raised an exception, time too early')

        domain.set_starttime(1300.0)
        domain.timestep = 1.0

        operator()

        d = default_rate * factor + d
        stage_ex1 = [d, d, 1., d]

        #        print domain.quantities['elevation'].centroid_values
        #        print domain.quantities['stage'].centroid_values
        #        print domain.quantities['xmomentum'].centroid_values
        #        print domain.quantities['ymomentum'].centroid_values

        assert num.allclose(domain.quantities['stage'].centroid_values,
                            stage_ex1)
        assert num.allclose(domain.quantities['xmomentum'].centroid_values,
                            0.0)
        assert num.allclose(domain.quantities['ymomentum'].centroid_values,
                            0.0)
        assert num.allclose(domain.fractional_step_volume_integral,
                            ((d - 1.) * domain.areas[indices]).sum())
Example #11
0
    def test_rate_operator_negative_rate_full(self):
        from anuga.config import rho_a, rho_w, eta_w
        from math import pi, cos, sin

        a = [0.0, 0.0]
        b = [0.0, 2.0]
        c = [2.0, 0.0]
        d = [0.0, 4.0]
        e = [2.0, 2.0]
        f = [4.0, 0.0]

        points = [a, b, c, d, e, f]
        #             bac,     bce,     ecf,     dbe
        vertices = [[1, 0, 2], [1, 2, 4], [4, 2, 5], [3, 1, 4]]

        domain = Domain(points, vertices)

        #Flat surface with 1m of water
        domain.set_quantity('elevation', 0)
        domain.set_quantity('stage', 10.0)
        domain.set_quantity('friction', 0)

        Br = Reflective_boundary(domain)
        domain.set_boundary({'exterior': Br})

        #        print domain.quantities['elevation'].centroid_values
        #        print domain.quantities['stage'].centroid_values
        #        print domain.quantities['xmomentum'].centroid_values
        #        print domain.quantities['ymomentum'].centroid_values

        # Apply operator to these triangles
        indices = [0, 1, 3]

        #Catchment_Rain_Polygon = read_polygon(join('CatchmentBdy.csv'))
        #rainfall = file_function(join('1y120m.tms'), quantities=['rainfall'])
        rate = -1.0
        factor = 10.0
        default_rate = 0.0

        operator = Rate_operator(domain, rate=rate, factor=factor, \
                      indices=None, default_rate = default_rate)

        # Apply Operator
        domain.timestep = 2.0
        operator()

        stage_ex = [0., 0., 0., 0.]
        step_integral = -80.0

        #print domain.quantities['elevation'].centroid_values
        #print domain.quantities['stage'].centroid_values
        #print domain.quantities['xmomentum'].centroid_values
        #print domain.quantities['ymomentum'].centroid_values
        #print domain.fractional_step_volume_integral

        assert num.allclose(domain.quantities['stage'].centroid_values,
                            stage_ex)
        assert num.allclose(domain.quantities['xmomentum'].centroid_values,
                            0.0)
        assert num.allclose(domain.quantities['ymomentum'].centroid_values,
                            0.0)
        assert num.allclose(domain.fractional_step_volume_integral,
                            step_integral)
    def parallel_time_varying_file_boundary_sts(self):
        """ parallel_test_time_varying_file_boundary_sts_sequential(self):
            Read correct points from ordering file and apply sts to boundary. 
            The boundary is time varying. Compares sequential result with 
            distributed result found using anuga_parallel
        """

        #------------------------------------------------------------
        # Define test variables
        #------------------------------------------------------------
        lat_long_points = [[6.01, 97.0], [6.02, 97.0], [6.05, 96.9],
                           [6.0, 97.0]]
        bounding_polygon = [[6.0, 97.0], [6.01, 97.0], [6.02, 97.0],
                            [6.02, 97.02], [6.00, 97.02]]
        tide = 3.0
        time_step_count = 65
        time_step = 2
        n = len(lat_long_points)
        first_tstep = num.ones(n, num.int)
        last_tstep = (time_step_count) * num.ones(n, num.int)
        finaltime = num.float(time_step * (time_step_count - 1))
        yieldstep = num.float(time_step)
        gauge_depth = 20 * num.ones(n, num.float)
        ha = 2 * num.ones((n, time_step_count), num.float)
        ua = 10 * num.ones((n, time_step_count), num.float)
        va = -10 * num.ones((n, time_step_count), num.float)

        times = num.arange(0, time_step_count * time_step, time_step)
        for i in range(n):
            #ha[i]+=num.sin(times)
            ha[i] += times / finaltime

        #------------------------------------------------------------
        # Write mux data to file then convert to sts format
        #------------------------------------------------------------
        sts_file = "test"
        if myid == 0:
            base_name, files = self.write_mux2(lat_long_points,
                                               time_step_count,
                                               time_step,
                                               first_tstep,
                                               last_tstep,
                                               depth=gauge_depth,
                                               ha=ha,
                                               ua=ua,
                                               va=va)
            # base name will not exist, but 3 other files are created

            # Write order file
            file_handle, order_base_name = tempfile.mkstemp("")
            os.close(file_handle)
            os.remove(order_base_name)
            d = ","
            order_file = order_base_name + 'order.txt'
            fid = open(order_file, 'w')

            # Write Header
            header = 'index, longitude, latitude\n'
            fid.write(header)
            indices = [3, 0, 1]
            for i in indices:
                line=str(i)+d+str(lat_long_points[i][1])+d+\
                    str(lat_long_points[i][0])+"\n"
                fid.write(line)
            fid.close()

            urs2sts(base_name,
                    basename_out=sts_file,
                    ordering_filename=order_file,
                    mean_stage=tide,
                    verbose=verbose)
            self.delete_mux(files)

            assert (os.access(sts_file + '.sts', os.F_OK))

            os.remove(order_file)

        barrier()
        #------------------------------------------------------------
        # Define boundary_polygon on each processor. This polygon defines the
        # urs boundary and lies on a portion of the bounding_polygon
        #------------------------------------------------------------
        boundary_polygon = create_sts_boundary(sts_file)

        # Append the remaining part of the boundary polygon to be defined by
        # the user
        bounding_polygon_utm = []
        for point in bounding_polygon:
            zone, easting, northing = redfearn(point[0], point[1])
            bounding_polygon_utm.append([easting, northing])

        boundary_polygon.append(bounding_polygon_utm[3])
        boundary_polygon.append(bounding_polygon_utm[4])

        assert num.allclose(bounding_polygon_utm, boundary_polygon)

        extent_res = 10000
        meshname = 'urs_test_mesh' + '.tsh'
        interior_regions = None
        boundary_tags = {'ocean': [0, 1], 'otherocean': [2, 3, 4]}

        #------------------------------------------------------------
        # Create mesh on the master processor and store in file. This file
        # is read in by each slave processor when needed
        #------------------------------------------------------------
        if myid == 0:
            create_mesh_from_regions(boundary_polygon,
                                     boundary_tags=boundary_tags,
                                     maximum_triangle_area=extent_res,
                                     filename=meshname,
                                     interior_regions=interior_regions,
                                     verbose=verbose)

            # barrier()
            domain_fbound = Domain(meshname)
            domain_fbound.set_quantities_to_be_stored(None)
            domain_fbound.set_quantity('stage', tide)
            # print domain_fbound.mesh.get_boundary_polygon()
        else:
            domain_fbound = None

        barrier()
        if (verbose and myid == 0):
            print 'DISTRIBUTING PARALLEL DOMAIN'
        domain_fbound = distribute(domain_fbound)

        #--------------------------------------------------------------------
        # Find which sub_domain in which the interpolation points are located
        #
        # Sometimes the interpolation points sit exactly
        # between two centroids, so in the parallel run we
        # reset the interpolation points to the centroids
        # found in the sequential run
        #--------------------------------------------------------------------
        interpolation_points = [[279000, 664000], [280250, 664130],
                                [279280, 665400], [280500, 665000]]

        interpolation_points = num.array(interpolation_points)

        #if myid==0:
        #    import pylab as P
        #    boundary_polygon=num.array(boundary_polygon)
        #    P.plot(boundary_polygon[:,0],boundary_polygon[:,1])
        #    P.plot(interpolation_points[:,0],interpolation_points[:,1],'ko')
        #    P.show()

        fbound_gauge_values = []
        fbound_proc_tri_ids = []
        for i, point in enumerate(interpolation_points):
            fbound_gauge_values.append([])  # Empty list for timeseries

            try:
                k = domain_fbound.get_triangle_containing_point(point)
                if domain_fbound.tri_full_flag[k] == 1:
                    fbound_proc_tri_ids.append(k)
                else:
                    fbound_proc_tri_ids.append(-1)
            except:
                fbound_proc_tri_ids.append(-2)

        if verbose: print 'P%d has points = %s' % (myid, fbound_proc_tri_ids)

        #------------------------------------------------------------
        # Set boundary conditions
        #------------------------------------------------------------
        Bf = File_boundary(sts_file + '.sts',
                           domain_fbound,
                           boundary_polygon=boundary_polygon)
        Br = Reflective_boundary(domain_fbound)

        domain_fbound.set_boundary({'ocean': Bf, 'otherocean': Br})

        #------------------------------------------------------------
        # Evolve the domain on each processor
        #------------------------------------------------------------
        for i, t in enumerate(
                domain_fbound.evolve(yieldstep=yieldstep,
                                     finaltime=finaltime,
                                     skip_initial_step=False)):

            stage = domain_fbound.get_quantity('stage')
            for i in range(4):
                if fbound_proc_tri_ids[i] > -1:
                    fbound_gauge_values[i].append(
                        stage.centroid_values[fbound_proc_tri_ids[i]])

        #------------------------------------------------------------
        # Create domain to be run sequntially on each processor
        #------------------------------------------------------------
        domain_drchlt = Domain(meshname)
        domain_drchlt.set_quantities_to_be_stored(None)
        domain_drchlt.set_starttime(time_step)
        domain_drchlt.set_quantity('stage', tide)
        Br = Reflective_boundary(domain_drchlt)
        #Bd = Dirichlet_boundary([2.0+tide,220+10*tide,-220-10*tide])
        Bd = Time_boundary(
            domain=domain_drchlt,
            function=lambda t: [
                2.0 + t / finaltime + tide, 220. + 10. * tide + 10. * t /
                finaltime, -220. - 10. * tide - 10. * t / finaltime
            ])
        #Bd = Time_boundary(domain=domain_drchlt,function=lambda t: [2.0+num.sin(t)+tide,10.*(2+20.+num.sin(t)+tide),-10.*(2+20.+num.sin(t)+tide)])
        domain_drchlt.set_boundary({'ocean': Bd, 'otherocean': Br})

        drchlt_gauge_values = []
        drchlt_proc_tri_ids = []
        for i, point in enumerate(interpolation_points):
            drchlt_gauge_values.append([])  # Empty list for timeseries

            try:
                k = domain_drchlt.get_triangle_containing_point(point)
                if domain_drchlt.tri_full_flag[k] == 1:
                    drchlt_proc_tri_ids.append(k)
                else:
                    drchlt_proc_tri_ids.append(-1)
            except:
                drchlt_proc_tri_ids.append(-2)

        if verbose: print 'P%d has points = %s' % (myid, drchlt_proc_tri_ids)

        #------------------------------------------------------------
        # Evolve entire domain on each processor
        #------------------------------------------------------------
        for i, t in enumerate(
                domain_drchlt.evolve(yieldstep=yieldstep,
                                     finaltime=finaltime,
                                     skip_initial_step=False)):

            stage = domain_drchlt.get_quantity('stage')
            for i in range(4):
                drchlt_gauge_values[i].append(
                    stage.centroid_values[drchlt_proc_tri_ids[i]])

        #------------------------------------------------------------
        # Compare sequential values with parallel values
        #------------------------------------------------------------
        barrier()
        success = True
        for i in range(4):
            if fbound_proc_tri_ids[i] > -1:
                fbound_gauge_values[i] = num.array(fbound_gauge_values[i])
                drchlt_gauge_values[i] = num.array(drchlt_gauge_values[i])
                #print i,fbound_gauge_values[i][4]
                #print i,drchlt_gauge_values[i][4]
                success = success and num.allclose(fbound_gauge_values[i],
                                                   drchlt_gauge_values[i])
                assert success  #, (fbound_gauge_values[i]-drchlt_gauge_values[i])

        #assert_(success)

        if not sys.platform == 'win32':
            if myid == 0: os.remove(sts_file + '.sts')

        if myid == 0: os.remove(meshname)
def setup_domain(simulation):

    args = simulation.args
    verbose = args.verbose
    alg = args.alg

    N = args.N
    S = args.S
    E = args.E
    W = args.W

    from catchment_info import create_catchment_list
    from catchment_info import create_manning_list

    CatchmentList = create_catchment_list(simulation)
    ManningList = create_manning_list(simulation)

    #---------------------------------------------------------------------------
    # CREATING MESH
    #---------------------------------------------------------------------------

    bounding_polygon = [[W, S], [E, S], [E, N], [W, N]]

    interior_regions = read_polygon_list(CatchmentList)

    # FIXME: Have these in a shapefile / other file and read them in
    breaklines = [[[306612.336559443, 6193708.75358065],
                   [306604.441364239, 6193693.17994946]],
                  [[306977.886673843, 6193753.44134088],
                   [306978.027867398, 6193710.94208076]],
                  [[306956.001672788, 6193750.89985688],
                   [306956.707640564, 6193706.14149989]],
                  [[306627.303076293, 6193697.45809624],
                   [306620.525785644, 6193683.62112783]],
                  [[307236.83565407, 6193741.01630802],
                   [307231.682089306, 6193721.03741996]],
                  [[307224.975395434, 6193742.71063068],
                   [307220.880782334, 6193723.36711362]],
                  [[307624.764946969, 6193615.98941489],
                   [307617.98765632, 6193601.44647871]],
                  [[307613.328268998, 6193623.19028621],
                   [307607.751123568, 6193610.97704368]]]

    # Make the mesh
    create_mesh_from_regions(bounding_polygon,
                             boundary_tags={
                                 'south': [0],
                                 'east': [1],
                                 'north': [2],
                                 'west': [3]
                             },
                             maximum_triangle_area=args.maximum_triangle_area,
                             interior_regions=interior_regions,
                             filename=args.meshname,
                             breaklines=breaklines,
                             use_cache=False,
                             verbose=True)

    #---------------------------------------------------------------------------
    # SETUP COMPUTATIONAL DOMAIN
    #---------------------------------------------------------------------------

    domain = Domain(args.meshname, use_cache=False, verbose=True)

    domain.set_flow_algorithm(alg)

    if (not domain.get_using_discontinuous_elevation()):
        raise Exception, 'This model run relies on a discontinuous elevation solver (because of how topography is set up)'

    domain.set_datadir(args.model_output_dir)
    domain.set_name(args.outname)

    print domain.statistics()

    #------------------------------------------------------------------------------
    # APPLY MANNING'S ROUGHNESSES
    #------------------------------------------------------------------------------

    if verbose: print 'Calculating complicated polygon friction function'
    friction_list = read_polygon_list(ManningList)
    domain.set_quantity(
        'friction',
        Polygon_function(friction_list,
                         default=args.base_friction,
                         geo_reference=domain.geo_reference))

    # Set a Initial Water Level over the Domain
    domain.set_quantity('stage', 0)

    if verbose: print 'Setting up elevation interpolation function'
    from anuga.utilities.quantity_setting_functions import make_nearestNeighbour_quantity_function

    if verbose: print 'READING %s' % args.basename + '.csv'
    elev_xyz = numpy.genfromtxt(fname=args.basename + '.csv', delimiter=',')

    # Use nearest-neighbour interpolation of elevation
    if verbose: print 'CREATING nearest neighbour interpolator'
    elev_fun_wrapper = make_nearestNeighbour_quantity_function(
        elev_xyz, domain)

    if verbose: print 'Applying elevation interpolation function'
    domain.set_quantity('elevation', elev_fun_wrapper, location='centroids')

    return domain
    def sequential_time_varying_file_boundary_sts(self):
        """sequential_ltest_time_varying_file_boundary_sts_sequential(self):
        Read correct points from ordering file and apply sts to boundary. The boundary is time varying. FIXME add to test_urs2sts.
        """
        lat_long_points = [[6.01, 97.0], [6.02, 97.0], [6.05, 96.9],
                           [6.0, 97.0]]
        bounding_polygon = [[6.0, 97.0], [6.01, 97.0], [6.02, 97.0],
                            [6.02, 97.02], [6.00, 97.02]]
        tide = 3.0
        time_step_count = 65
        time_step = 2.
        n = len(lat_long_points)
        first_tstep = num.ones(n, num.int)
        last_tstep = (time_step_count) * num.ones(n, num.int)
        finaltime = num.float(time_step * (time_step_count - 1))
        yieldstep = num.float(time_step)
        gauge_depth = 20 * num.ones(n, num.float)
        ha = 2 * num.ones((n, time_step_count), num.float)
        ua = 10 * num.ones((n, time_step_count), num.float)
        va = -10 * num.ones((n, time_step_count), num.float)

        times = num.arange(0., num.float(time_step_count * time_step),
                           time_step)
        for i in range(n):
            #ha[i]+=num.sin(times)
            ha[i] += times / finaltime

        sts_file = "test"
        if myid == 0:
            base_name, files = self.write_mux2(lat_long_points,
                                               time_step_count,
                                               time_step,
                                               first_tstep,
                                               last_tstep,
                                               depth=gauge_depth,
                                               ha=ha,
                                               ua=ua,
                                               va=va)
            # base name will not exist, but 3 other files are created

            # Write order file
            file_handle, order_base_name = tempfile.mkstemp("")
            os.close(file_handle)
            os.remove(order_base_name)
            d = ","
            order_file = order_base_name + 'order.txt'
            fid = open(order_file, 'w')

            # Write Header
            header = 'index, longitude, latitude\n'
            fid.write(header)
            indices = [3, 0, 1]
            for i in indices:
                line=str(i)+d+str(lat_long_points[i][1])+d+\
                    str(lat_long_points[i][0])+"\n"
                fid.write(line)
            fid.close()

            urs2sts(base_name,
                    basename_out=sts_file,
                    ordering_filename=order_file,
                    mean_stage=tide,
                    verbose=verbose)
            self.delete_mux(files)

            assert (os.access(sts_file + '.sts', os.F_OK))

            os.remove(order_file)

        barrier()
        boundary_polygon = create_sts_boundary(sts_file)

        # Append the remaining part of the boundary polygon to be defined by
        # the user
        bounding_polygon_utm = []
        for point in bounding_polygon:
            zone, easting, northing = redfearn(point[0], point[1])
            bounding_polygon_utm.append([easting, northing])

        boundary_polygon.append(bounding_polygon_utm[3])
        boundary_polygon.append(bounding_polygon_utm[4])

        assert num.allclose(bounding_polygon_utm, boundary_polygon)

        extent_res = 1000000
        meshname = 'urs_test_mesh' + '.tsh'
        interior_regions = None
        boundary_tags = {'ocean': [0, 1], 'otherocean': [2, 3, 4]}

        # have to change boundary tags from last example because now bounding
        # polygon starts in different place.
        if myid == 0:
            create_mesh_from_regions(boundary_polygon,
                                     boundary_tags=boundary_tags,
                                     maximum_triangle_area=extent_res,
                                     filename=meshname,
                                     interior_regions=interior_regions,
                                     verbose=verbose)

        barrier()

        domain_fbound = Domain(meshname)
        domain_fbound.set_quantities_to_be_stored(None)
        domain_fbound.set_quantity('stage', tide)
        if verbose: print "Creating file boundary condition"
        Bf = File_boundary(sts_file + '.sts',
                           domain_fbound,
                           boundary_polygon=boundary_polygon)
        Br = Reflective_boundary(domain_fbound)

        domain_fbound.set_boundary({'ocean': Bf, 'otherocean': Br})

        temp_fbound = num.zeros(int(finaltime / yieldstep) + 1, num.float)
        if verbose: print "Evolving domain with file boundary condition"
        for i, t in enumerate(
                domain_fbound.evolve(yieldstep=yieldstep,
                                     finaltime=finaltime,
                                     skip_initial_step=False)):
            temp_fbound[i] = domain_fbound.quantities['stage'].centroid_values[
                2]
            if verbose: domain_fbound.write_time()

        domain_drchlt = Domain(meshname)
        domain_drchlt.set_quantities_to_be_stored(None)
        domain_drchlt.set_starttime(time_step)
        domain_drchlt.set_quantity('stage', tide)
        Br = Reflective_boundary(domain_drchlt)
        #Bd = Dirichlet_boundary([2.0+tide,220+10*tide,-220-10*tide])
        Bd = Time_boundary(
            domain=domain_drchlt,
            f=lambda t: [
                2.0 + t / finaltime + tide, 220. + 10. * tide + 10. * t /
                finaltime, -220. - 10. * tide - 10. * t / finaltime
            ])
        #Bd = Time_boundary(domain=domain_drchlt,f=lambda t: [2.0+num.sin(t)+tide,10.*(2+20.+num.sin(t)+tide),-10.*(2+20.+num.sin(t)+tide)])
        domain_drchlt.set_boundary({'ocean': Bd, 'otherocean': Br})
        temp_drchlt = num.zeros(int(finaltime / yieldstep) + 1, num.float)

        for i, t in enumerate(
                domain_drchlt.evolve(yieldstep=yieldstep,
                                     finaltime=finaltime,
                                     skip_initial_step=False)):
            temp_drchlt[i] = domain_drchlt.quantities['stage'].centroid_values[
                2]
            #domain_drchlt.write_time()

        #print domain_fbound.quantities['stage'].vertex_values
        #print domain_drchlt.quantities['stage'].vertex_values

        assert num.allclose(temp_fbound,
                            temp_drchlt), temp_fbound - temp_drchlt

        assert num.allclose(domain_fbound.quantities['stage'].vertex_values,
                            domain_drchlt.quantities['stage'].vertex_values)

        assert num.allclose(
            domain_fbound.quantities['xmomentum'].vertex_values,
            domain_drchlt.quantities['xmomentum'].vertex_values)

        assert num.allclose(
            domain_fbound.quantities['ymomentum'].vertex_values,
            domain_drchlt.quantities['ymomentum'].vertex_values)

        if not sys.platform == 'win32':
            if myid == 0: os.remove(sts_file + '.sts')

        if myid == 0: os.remove(meshname)
Example #15
0
    def concept_ungenerateII(self):
        from anuga import Domain, Reflective_boundary, Dirichlet_boundary

        x = 0
        y = 0
        mesh_geo = geo_reference = Geo_reference(56, x, y)

        # These are the absolute values
        polygon_absolute = [[0, 0], [100, 0], [100, 100], [0, 100]]
        x_p = -10
        y_p = -40
        geo_ref_poly = Geo_reference(56, x_p, y_p)
        polygon = geo_ref_poly.change_points_geo_ref(polygon_absolute)

        boundary_tags = {'wall': [0, 1, 3], 'wave': [2]}

        inner1_polygon_absolute = [[10, 10], [20, 10], [20, 20], [10, 20]]
        inner1_polygon = geo_ref_poly.\
                            change_points_geo_ref(inner1_polygon_absolute)

        inner2_polygon_absolute = [[30, 30], [40, 30], [40, 40], [30, 40]]
        inner2_polygon = geo_ref_poly.\
                            change_points_geo_ref(inner2_polygon_absolute)

        max_area = 1
        interior_regions = [(inner1_polygon, 5), (inner2_polygon, 10)]
        m = create_mesh_from_regions(polygon,
                                     boundary_tags,
                                     max_area,
                                     interior_regions=interior_regions,
                                     poly_geo_reference=geo_ref_poly,
                                     mesh_geo_reference=mesh_geo)

        m.export_mesh_file('a_test_mesh_iknterface.tsh')

        fileName = tempfile.mktemp('.txt')
        file = open(fileName, 'w')
        file.write('         1       ??      ??\n\
       90.0       90.0\n\
       81.0       90.0\n\
       81.0       81.0\n\
       90.0       81.0\n\
       90.0       90.0\n\
END\n\
         2      ?? ??\n\
       10.0       80.0\n\
       10.0       90.0\n\
       20.0       90.0\n\
       10.0       80.0\n\
END\n\
END\n')
        file.close()

        m.import_ungenerate_file(fileName)  #, tag='wall')
        os.remove(fileName)
        m.generate_mesh(maximum_triangle_area=max_area, verbose=False)
        mesh_filename = 'bento_b.tsh'
        m.export_mesh_file(mesh_filename)

        domain = Domain(mesh_filename, use_cache=False)

        Br = Reflective_boundary(domain)
        Bd = Dirichlet_boundary([3, 0, 0])
        domain.set_boundary({'wall': Br, 'wave': Bd})
        yieldstep = 0.1
        finaltime = 10
        for t in domain.evolve(yieldstep, finaltime):
            domain.write_time()
Example #16
0
    def test_runup_sinusoid(self):
        """ Run a version of the validation test runup_sinusoid
        to ensure limiting solution has small velocity
        """

        points, vertices, boundary = anuga.rectangular_cross(20,20, len1=1., len2=1.)


        domain=Domain(points,vertices,boundary)    # Create Domain
        domain.set_flow_algorithm('DE0')
        
        domain.set_name('runup_sinusoid_v2')                         # Output to file runup.sww
        domain.set_datadir('.')                          # Use current folder
        domain.set_quantities_to_be_stored({'stage': 2, 'xmomentum': 2, 'ymomentum': 2, 'elevation': 1})
        #domain.set_store_vertices_uniquely(True)
        #------------------
        # Define topography
        #------------------
        scale_me=1.0

        def topography(x,y):
            return (-x/2.0 +0.05*num.sin((x+y)*50.0))*scale_me

        def stagefun(x,y):
            stge=-0.2*scale_me #+0.01*(x>0.9)
            return stge

        domain.set_quantity('elevation',topography)     # Use function for elevation
        domain.get_quantity('elevation').smooth_vertex_values()
        domain.set_quantity('friction',0.03)            # Constant friction


        domain.set_quantity('stage', stagefun)             # Constant negative initial stage
        domain.get_quantity('stage').smooth_vertex_values()


        #--------------------------
        # Setup boundary conditions
        #--------------------------
        Br=anuga.Reflective_boundary(domain)                 # Solid reflective wall
        Bd=anuga.Dirichlet_boundary([-0.1*scale_me,0.,0.])   # Constant boundary values -- not used in this example

        #----------------------------------------------
        # Associate boundary tags with boundary objects
        #----------------------------------------------
        domain.set_boundary({'left': Br, 'right': Bd, 'top': Br, 'bottom':Br})

        #------------------------------
        #Evolve the system through time
        #------------------------------

        for t in domain.evolve(yieldstep=7.0,finaltime=7.0):
            #print domain.timestepping_statistics()
            xx = domain.quantities['xmomentum'].centroid_values
            yy = domain.quantities['ymomentum'].centroid_values
            dd = domain.quantities['stage'].centroid_values - domain.quantities['elevation'].centroid_values
            #dd_raw=1.0*dd
            dd = (dd)*(dd>1.0e-03)+1.0e-03
            vv = ( (xx/dd)**2 + (yy/dd)**2)**0.5
            vv = vv*(dd>1.0e-03)
            #print 'Peak velocity is: ', vv.max(), vv.argmax()
            #print 'Volume is', sum(dd_raw*domain.areas)


        #print vv.max()

        assert num.all(vv<1.01e-01)
Example #17
0
    def test_rate_operator_rate_quantity(self):
        from anuga.config import rho_a, rho_w, eta_w
        from math import pi, cos, sin

        a = [0.0, 0.0]
        b = [0.0, 2.0]
        c = [2.0, 0.0]
        d = [0.0, 4.0]
        e = [2.0, 2.0]
        f = [4.0, 0.0]

        points = [a, b, c, d, e, f]
        #             bac,     bce,     ecf,     dbe
        vertices = [[1, 0, 2], [1, 2, 4], [4, 2, 5], [3, 1, 4]]

        domain = Domain(points, vertices)

        #Flat surface with 1m of water
        domain.set_quantity('elevation', 0.0)
        domain.set_quantity('stage', 1.0)
        domain.set_quantity('friction', 0.0)

        Br = Reflective_boundary(domain)
        domain.set_boundary({'exterior': Br})

        verbose = False

        if verbose:
            print domain.quantities['elevation'].centroid_values
            print domain.quantities['stage'].centroid_values
            print domain.quantities['xmomentum'].centroid_values
            print domain.quantities['ymomentum'].centroid_values

        # Apply operator to these triangles
        indices = [0, 1, 3]
        factor = 10.0

        from anuga import Quantity
        rate_Q = Quantity(domain)
        rate_Q.set_values(1.0)

        operator = Rate_operator(domain, rate=rate_Q, factor=factor, \
                                 indices=indices)

        # Apply Operator
        domain.timestep = 2.0
        operator()
        rate = rate_Q.centroid_values[indices]
        t = operator.get_time()
        Q = operator.get_Q()

        rate = rate * factor
        Q_ex = num.sum(domain.areas[indices] * rate)
        d = operator.get_timestep() * rate + 1

        #print "d"
        #print d
        #print Q_ex
        #print Q
        stage_ex = num.array([1.0, 1.0, 1.0, 1.0])
        stage_ex[indices] = d

        verbose = False

        if verbose:
            print domain.quantities['elevation'].centroid_values
            print domain.quantities['stage'].centroid_values
            print domain.quantities['xmomentum'].centroid_values
            print domain.quantities['ymomentum'].centroid_values

        assert num.allclose(domain.quantities['stage'].centroid_values,
                            stage_ex)
        assert num.allclose(domain.quantities['xmomentum'].centroid_values,
                            0.0)
        assert num.allclose(domain.quantities['ymomentum'].centroid_values,
                            0.0)
        assert num.allclose(Q_ex, Q)
        assert num.allclose(domain.fractional_step_volume_integral,
                            ((d - 1.) * domain.areas[indices]).sum())
Example #18
0
                         boundary_tags={
                             'south': [0],
                             'east': [1],
                             'north': [2],
                             'west': [3]
                         },
                         maximum_triangle_area=1.0,
                         filename=meshname,
                         use_cache=False,
                         verbose=True)

#------------------------------------------------------------------------------
# SETUP COMPUTATIONAL DOMAIN
#------------------------------------------------------------------------------

domain = Domain(meshname, use_cache=False, verbose=True)
domain.set_minimum_storable_height(0.0001)
domain.set_name(outname)
print(domain.statistics())

#------------------------------------------------------------------------------
# APPLY MANNING'S ROUGHNESSES
#------------------------------------------------------------------------------

domain.set_quantity('friction', 0.035)

domain.set_quantity('elevation',
                    filename=basename + '.csv',
                    use_cache=False,
                    verbose=True,
                    alpha=0.1)
def start_sim(run_id, Runs, scenario_name, Scenario, session, **kwargs):
    yieldstep = kwargs['yieldstep']
    finaltime = kwargs['finaltime']
    logger = logging.getLogger(run_id)
    max_triangle_area = kwargs['max_triangle_area']
    logger.info('Starting hydrata_project')

    if run_id == 'local_run':
        base_dir = os.getcwd()
    else:
        base_dir = os.getcwd() + '/base_dir/%s/' % run_id

    outname = run_id
    meshname = base_dir + 'outputs/' + run_id + '.msh'

    def get_filename(data_type, file_type):
        files = os.listdir('%sinputs/%s' % (base_dir, data_type))
        filename = '%sinputs/%s/%s' % (
            base_dir, data_type, [f for f in files if f[-4:] == file_type][0])
        return filename

    boundary_data_filename = get_filename('boundary_data', '.shp')
    elevation_data_filename = get_filename('elevation_data', '.tif')
    try:
        structures_filename = get_filename('structures', '.shp')
    except OSError as e:
        structures_filename = None
    try:
        rain_data_filename = get_filename('rain_data', '.shp')
    except OSError as e:
        rain_data_filename = None
    try:
        inflow_data_filename = get_filename('inflow_data', '.shp')
    except OSError as e:
        inflow_data_filename = None
    try:
        friction_data_filename = get_filename('friction_data', '.shp')
    except OSError as e:
        friction_data_filename = None

    logger.info('boundary_data_filename: %s' % boundary_data_filename)
    logger.info('structures_filename: %s' % structures_filename)
    logger.info('rain_data_filename: %s' % rain_data_filename)
    logger.info('inflow_data_filename: %s' % inflow_data_filename)
    logger.info('friction_data_filename: %s' % friction_data_filename)
    logger.info('elevation_data_filename: %s' % elevation_data_filename)

    # create a list of project files
    vector_filenames = [
        boundary_data_filename, structures_filename, rain_data_filename,
        inflow_data_filename, friction_data_filename
    ]

    # set the projection system for ANUGA calculations from the geotiff elevation data
    elevation_data_gdal = gdal.Open(elevation_data_filename)
    project_spatial_ref = osr.SpatialReference()
    project_spatial_ref.ImportFromWkt(elevation_data_gdal.GetProjectionRef())
    project_spatial_ref_epsg_code = int(
        project_spatial_ref.GetAttrValue("AUTHORITY", 1))

    # check the spatial reference system of the project files matches that of the calculation
    for filename in vector_filenames:
        if filename:
            prj_text = open(filename[:-4] + '.prj').read()
            srs = osr.SpatialReference()
            srs.ImportFromESRI([prj_text])
            srs.AutoIdentifyEPSG()
            logger.info('filename is: %s' % filename)
            logger.info('EPSG is: %s' % srs.GetAuthorityCode(None))
            if str(srs.GetAuthorityCode(None)) != str(
                    project_spatial_ref_epsg_code):
                logger.warning('warning spatial refs are not maching: %s, %s' %
                               (srs.GetAuthorityCode(None),
                                project_spatial_ref_epsg_code))

    logger.info('Setting up structures...')
    if structures_filename:
        structures = []
        logger.info('processing structures from :%s' % structures_filename)
        ogr_shapefile = ogr.Open(structures_filename)
        ogr_layer = ogr_shapefile.GetLayer(0)
        ogr_layer_feature = ogr_layer.GetNextFeature()
        while ogr_layer_feature:
            structure = json.loads(ogr_layer_feature.GetGeometryRef().
                                   ExportToJson())['coordinates'][0]
            structures.append(structure)
            ogr_layer_feature = None
            ogr_layer_feature = ogr_layer.GetNextFeature()

        logger.info('structures: %s' % structures)
    else:
        logger.warning('warning: no structures found.')
        structures = None

    logger.info('Setting up friction...')
    frictions = []
    if friction_data_filename:
        logger.info('processing frictions from :%s' % friction_data_filename)
        ogr_shapefile = ogr.Open(friction_data_filename)
        ogr_layer = ogr_shapefile.GetLayer(0)
        ogr_layer_feature = ogr_layer.GetNextFeature()
        while ogr_layer_feature:
            friction_poly = json.loads(ogr_layer_feature.GetGeometryRef().
                                       ExportToJson())['coordinates'][0]
            friction_value = float(ogr_layer_feature.GetField('mannings'))
            friction_couple = [friction_poly, friction_value]
            frictions.append(friction_couple)
            ogr_layer_feature = None
            ogr_layer_feature = ogr_layer.GetNextFeature()

        frictions.append(['All', 0.04])
        logger.info('frictions: %s' % frictions)
    else:
        frictions.append(['All', 0.04])
        logger.info('warning: no frictions found.')

    logger.info('Setting up boundary conditions...')
    ogr_shapefile = ogr.Open(boundary_data_filename)
    ogr_layer = ogr_shapefile.GetLayer(0)
    ogr_layer_definition = ogr_layer.GetLayerDefn()
    logger.info('ogr_layer_definition.GetGeomType: %s' %
                ogr_layer_definition.GetGeomType())
    boundary_tag_index = 0
    bdy_tags = {}
    bdy = {}

    ogr_layer_feature = ogr_layer.GetNextFeature()
    while ogr_layer_feature:
        boundary_tag_key = ogr_layer_feature.GetField('bdy_tag_k')
        boundary_tag_value = ogr_layer_feature.GetField('bdy_tag_v')
        bdy_tags[boundary_tag_key] = [
            boundary_tag_index * 2, boundary_tag_index * 2 + 1
        ]
        bdy[boundary_tag_key] = boundary_tag_value
        geom = ogr_layer_feature.GetGeometryRef().GetPoints()
        ogr_layer_feature = None
        ogr_layer_feature = ogr_layer.GetNextFeature()
        boundary_tag_index = boundary_tag_index + 1
        logger.info('bdy_tags: %s' % bdy_tags)
    logger.info('bdy: %s' % bdy)

    boundary_data = su.read_polygon(boundary_data_filename)

    create_mesh_from_regions(boundary_data,
                             boundary_tags=bdy_tags,
                             maximum_triangle_area=max_triangle_area,
                             interior_regions=None,
                             interior_holes=structures,
                             filename=meshname,
                             use_cache=False,
                             verbose=True)

    domain = Domain(meshname, use_cache=False, verbose=True)
    domain.set_name(outname)
    domain.set_datadir(base_dir + '/outputs')
    logger.info(domain.statistics())
    poly_fun_pairs = [['Extent', elevation_data_filename.encode("utf-8")]]
    topography_function = qs.composite_quantity_setting_function(
        poly_fun_pairs,
        domain,
        nan_treatment='exception',
    )
    friction_function = qs.composite_quantity_setting_function(
        frictions, domain)
    domain.set_quantity('friction', friction_function, verbose=True)
    domain.set_quantity('stage', 0.0)
    domain.set_quantity('elevation',
                        topography_function,
                        verbose=True,
                        alpha=0.99)
    domain.set_minimum_storable_height(0.005)

    logger.info('Applying rainfall...')
    if rain_data_filename:
        ogr_shapefile = ogr.Open(rain_data_filename)
        ogr_layer = ogr_shapefile.GetLayer(0)
        rainfall = 0
        ogr_layer_feature = ogr_layer.GetNextFeature()
        while ogr_layer_feature:
            rainfall = float(ogr_layer_feature.GetField('rate_mm_hr'))
            polygon = su.read_polygon(rain_data_filename)
            logger.info("applying Polygonal_rate_operator with rate, polygon:")
            logger.info(rainfall)
            logger.info(polygon)
            Polygonal_rate_operator(domain,
                                    rate=rainfall,
                                    factor=1.0e-6,
                                    polygon=polygon,
                                    default_rate=0.0)
            ogr_layer_feature = None
            ogr_layer_feature = ogr_layer.GetNextFeature()

    logger.info('Applying surface inflows...')
    if inflow_data_filename:
        ogr_shapefile = ogr.Open(inflow_data_filename)
        ogr_layer = ogr_shapefile.GetLayer(0)
        ogr_layer_definition = ogr_layer.GetLayerDefn()
        ogr_layer_feature = ogr_layer.GetNextFeature()
        while ogr_layer_feature:
            in_fixed = float(ogr_layer_feature.GetField('in_fixed'))
            line = ogr_layer_feature.GetGeometryRef().GetPoints()
            logger.info("applying Inlet_operator with line, in_fixed:")
            logger.info(line)
            logger.info(in_fixed)
            Inlet_operator(domain, line, in_fixed, verbose=False)
            ogr_layer_feature = None
            ogr_layer_feature = ogr_layer.GetNextFeature()

    logger.info('Applying Boundary Conditions...')
    logger.info('Available boundary tags: %s' % domain.get_boundary_tags())

    Br = anuga.Reflective_boundary(domain)
    Bd = anuga.Dirichlet_boundary([0.0, 0.0, 0.0])
    Bt = anuga.Transmissive_boundary(domain)

    for key, value in bdy.iteritems():
        if value == 'Br':
            bdy[key] = Br
        elif value == 'Bd':
            bdy[key] = Bd
        elif value == 'Bt':
            bdy[key] = Bt
        else:
            logger.info(
                'No matching boundary condition exists - please check your shapefile attributes in: %s'
                % boundary_data_filename)

    # set a default value for exterior & interior boundary if it is not already set
    try:
        bdy['exterior']
    except KeyError:
        bdy['exterior'] = Br
    try:
        bdy['interior']
    except KeyError:
        bdy['interior'] = Br

    logger.info('bdy: %s' % bdy)

    domain.set_boundary(bdy)

    domain = distribute(domain)
    logger.info('Beginning evolve phase...')
    for t in domain.evolve(yieldstep, finaltime):
        domain.write_time()
        print domain.timestepping_statistics()
        logger.info(domain.timestepping_statistics(track_speeds=True))
        percentage_complete = round(domain.time / domain.finaltime, 3) * 100
        logger.info('%s percent complete' % percentage_complete)
        if run_id != 'local_run':
            write_percentage_complete(run_id, Runs, scenario_name, Scenario,
                                      session, percentage_complete)
    domain.sww_merge(delete_old=True)
    barrier()
    finalize()
    sww_file = base_dir + '/outputs/' + run_id + '.sww'
    sww_file = sww_file.encode(
        'utf-8',
        'ignore')  # sometimes run_id gets turned to a unicode object by celery
    util.Make_Geotif(swwFile=sww_file,
                     output_quantities=['depth', 'velocity'],
                     myTimeStep='max',
                     CellSize=max_triangle_area,
                     lower_left=None,
                     upper_right=None,
                     EPSG_CODE=project_spatial_ref_epsg_code,
                     proj4string=None,
                     velocity_extrapolation=True,
                     min_allowed_height=1.0e-05,
                     output_dir=(base_dir + '/outputs/'),
                     bounding_polygon=boundary_data,
                     internal_holes=structures,
                     verbose=False,
                     k_nearest_neighbours=3,
                     creation_options=[])
    logger.info("Done. Nice work.")
    def test_set_elevation_operator_negative_1_5(self):
        from anuga.config import rho_a, rho_w, eta_w
        from math import pi, cos, sin

        a = [0.0, 0.0]
        b = [0.0, 2.0]
        c = [2.0, 0.0]
        d = [0.0, 4.0]
        e = [2.0, 2.0]
        f = [4.0, 0.0]

        points = [a, b, c, d, e, f]
        #             bac,     bce,     ecf,     dbe
        vertices = [[1, 0, 2], [1, 2, 4], [4, 2, 5], [3, 1, 4]]

        domain = Domain(points, vertices)
        domain.set_flow_algorithm('1_5')

        #Flat surface with 1m of water
        domain.set_quantity('elevation', lambda x, y: -2 * x)
        domain.set_quantity('stage', 1.0)
        domain.set_quantity('friction', 0)

        stage_c = domain.quantities['stage'].centroid_values
        elev_c = domain.quantities['elevation'].centroid_values

        height_c = stage_c - elev_c

        integral0 = num.sum(height_c)

        Br = Reflective_boundary(domain)
        domain.set_boundary({'exterior': Br})

        #        print domain.quantities['elevation'].centroid_values
        #        print domain.quantities['stage'].centroid_values
        #        print domain.quantities['xmomentum'].centroid_values
        #        print domain.quantities['ymomentum'].centroid_values

        # Apply operator to these triangles
        indices = [0, 1, 3]

        #Catchment_Rain_Polygon = read_polygon(join('CatchmentBdy.csv'))
        #rainfall = file_function(join('1y120m.tms'), quantities=['rainfall'])
        elev = -5.0

        operator = Set_elevation_operator(domain,
                                          elevation=elev,
                                          indices=indices)

        # Apply Operator
        domain.timestep = 2.0
        operator()

        height_c = stage_c - elev_c
        integral1 = num.sum(height_c)
        assert integral0 == integral1

        elev_ex = [-4.88888889, -4.77777778, -5.77777778, -4.88888889]
        stage_ex = [-2.55555556, -1.11111111, 0.55555556, -2.55555556]

        #        print domain.quantities['elevation'].centroid_values
        #        print domain.quantities['stage'].centroid_values
        #        print domain.quantities['xmomentum'].centroid_values
        #        print domain.quantities['ymomentum'].centroid_values

        assert num.allclose(domain.quantities['elevation'].centroid_values,
                            elev_ex)
        assert num.allclose(domain.quantities['stage'].centroid_values,
                            stage_ex)
        assert num.allclose(domain.quantities['xmomentum'].centroid_values,
                            0.0)
        assert num.allclose(domain.quantities['ymomentum'].centroid_values,
                            0.0)
    def test_set_elevation_operator_small_function_de0(self):
        from anuga.config import rho_a, rho_w, eta_w
        from math import pi, cos, sin

        a = [0.0, 0.0]
        b = [0.0, 2.0]
        c = [2.0, 0.0]
        d = [0.0, 4.0]
        e = [2.0, 2.0]
        f = [4.0, 0.0]

        points = [a, b, c, d, e, f]
        #             bac,     bce,     ecf,     dbe
        vertices = [[1, 0, 2], [1, 2, 4], [4, 2, 5], [3, 1, 4]]

        domain = Domain(points, vertices)

        #Flat surface with 1m of water
        domain.set_quantity('elevation', 0.0)
        domain.set_quantity('stage', 1.0)
        domain.set_quantity('friction', 0)

        Br = Reflective_boundary(domain)
        domain.set_boundary({'exterior': Br})

        #        print domain.quantities['stage'].centroid_values
        #        print domain.quantities['xmomentum'].centroid_values
        #        print domain.quantities['ymomentum'].centroid_values

        # Apply operator to these triangles
        indices = [0, 1, 3]

        def elev(t):
            if t < 10.0:
                return 5.0
            else:
                return 7.0

        operator = Set_elevation_operator(domain,
                                          elevation=elev,
                                          indices=indices)

        # Apply Operator at time t=1.0
        domain.set_time(1.0)
        operator()

        elev_ex = [5., 5., 0., 5.]
        stage_ex = [6., 6., 1., 6.]

        #pprint( domain.quantities['elevation'].centroid_values)
        #pprint( domain.quantities['stage'].centroid_values)
        #pprint( domain.quantities['xmomentum'].centroid_values)
        #pprint( domain.quantities['ymomentum'].centroid_values)

        assert num.allclose(domain.quantities['elevation'].centroid_values,
                            elev_ex)
        assert num.allclose(domain.quantities['stage'].centroid_values,
                            stage_ex)
        assert num.allclose(domain.quantities['xmomentum'].centroid_values,
                            0.0)
        assert num.allclose(domain.quantities['ymomentum'].centroid_values,
                            0.0)

        # Apply Operator at time t=15.0
        domain.set_time(15.0)
        operator()

        elev_ex = [7., 7., 0., 7.]
        stage_ex = [8., 8., 1., 8.]

        #pprint( domain.quantities['elevation'].centroid_values )
        #pprint( domain.quantities['stage'].centroid_values )
        #        print domain.quantities['xmomentum'].centroid_values
        #        print domain.quantities['ymomentum'].centroid_values

        assert num.allclose(domain.quantities['elevation'].centroid_values,
                            elev_ex)
        assert num.allclose(domain.quantities['stage'].centroid_values,
                            stage_ex)
        assert num.allclose(domain.quantities['xmomentum'].centroid_values,
                            0.0)
        assert num.allclose(domain.quantities['ymomentum'].centroid_values,
                            0.0)
    def test_set_elevation_operator_simple_1_5(self):
        from anuga.config import rho_a, rho_w, eta_w
        from math import pi, cos, sin

        a = [0.0, 0.0]
        b = [0.0, 2.0]
        c = [2.0, 0.0]
        d = [0.0, 4.0]
        e = [2.0, 2.0]
        f = [4.0, 0.0]

        points = [a, b, c, d, e, f]
        #             bac,     bce,     ecf,     dbe
        vertices = [[1, 0, 2], [1, 2, 4], [4, 2, 5], [3, 1, 4]]

        domain = Domain(points, vertices)
        domain.set_flow_algorithm('1_5')

        #Flat surface with 1m of water
        domain.set_quantity('elevation', 0)
        domain.set_quantity('stage', 1.0)
        domain.set_quantity('friction', 0)

        stage_c = domain.quantities['stage'].centroid_values
        elev_c = domain.quantities['elevation'].centroid_values

        height_c = stage_c - elev_c

        integral0 = num.sum(height_c)

        Br = Reflective_boundary(domain)
        domain.set_boundary({'exterior': Br})

        #        print domain.quantities['stage'].centroid_values
        #        print domain.quantities['xmomentum'].centroid_values
        #        print domain.quantities['ymomentum'].centroid_values

        # Apply operator to these triangles
        indices = [0, 1, 3]

        elev = 3.0

        operator = Set_elevation_operator(domain,
                                          elevation=elev,
                                          indices=indices)

        # Apply Operator
        domain.timestep = 2.0
        operator()

        height_c = stage_c - elev_c

        integral1 = num.sum(height_c)

        assert integral0 == integral1

        stage_ex = [3.66666667, 3.33333333, 2.33333333, 3.66666667]

        elev_ex = [2.66666667, 2.33333333, 1.33333333, 2.66666667]

        #        print domain.quantities['elevation'].centroid_values
        #        print domain.quantities['stage'].centroid_values
        #        print domain.quantities['xmomentum'].centroid_values
        #        print domain.quantities['ymomentum'].centroid_values

        assert num.allclose(domain.quantities['elevation'].centroid_values,
                            elev_ex)
        assert num.allclose(domain.quantities['stage'].centroid_values,
                            stage_ex)
        assert num.allclose(domain.quantities['xmomentum'].centroid_values,
                            0.0)
        assert num.allclose(domain.quantities['ymomentum'].centroid_values,
                            0.0)
Example #23
0
    def test_rate_operator_functions_empty_indices(self):
        from anuga.config import rho_a, rho_w, eta_w
        from math import pi, cos, sin

        a = [0.0, 0.0]
        b = [0.0, 2.0]
        c = [2.0, 0.0]
        d = [0.0, 4.0]
        e = [2.0, 2.0]
        f = [4.0, 0.0]

        points = [a, b, c, d, e, f]
        #             bac,     bce,     ecf,     dbe
        vertices = [[1, 0, 2], [1, 2, 4], [4, 2, 5], [3, 1, 4]]

        domain = Domain(points, vertices)

        #Flat surface with 1m of water
        domain.set_quantity('elevation', 0.0)
        domain.set_quantity('stage', 1.0)
        domain.set_quantity('friction', 0.0)

        Br = Reflective_boundary(domain)
        domain.set_boundary({'exterior': Br})

        verbose = False

        if verbose:
            print domain.quantities['elevation'].centroid_values
            print domain.quantities['stage'].centroid_values
            print domain.quantities['xmomentum'].centroid_values
            print domain.quantities['ymomentum'].centroid_values

        # Apply operator to these triangles
        indices = []
        factor = 10.0

        def main_spatial_rate(x, y, t):
            # x and y should be an n by 1 array
            return x + y

        default_rate = 0.0

        domain.tri_full_flag[0] = 0
        operator = Rate_operator(domain, rate=main_spatial_rate, factor=factor, \
                      indices=indices, default_rate = default_rate)

        # Apply Operator
        domain.timestep = 2.0
        operator()

        t = operator.get_time()
        Q = operator.get_Q()
        x = operator.coord_c[indices, 0]
        y = operator.coord_c[indices, 1]
        rate = main_spatial_rate(x, y, t) * factor
        Q_ex = num.sum(domain.areas[indices] * rate)
        d = operator.get_timestep() * rate + 1

        #print Q_ex, Q
        #print indices
        #print "d"
        #print d
        stage_ex = num.array([1.0, 1.0, 1.0, 1.0])
        stage_ex[indices] = d

        if verbose:
            print domain.quantities['elevation'].centroid_values
            print domain.quantities['stage'].centroid_values
            print domain.quantities['xmomentum'].centroid_values
            print domain.quantities['ymomentum'].centroid_values

        assert num.allclose(domain.quantities['stage'].centroid_values,
                            stage_ex)
        assert num.allclose(domain.quantities['xmomentum'].centroid_values,
                            0.0)
        assert num.allclose(domain.quantities['ymomentum'].centroid_values,
                            0.0)
        assert num.allclose(Q_ex, Q)
        assert num.allclose(domain.fractional_step_volume_integral,
                            ((d - 1.) * domain.areas[indices]).sum())
def distibute_three_processors():
    """
    Do a parallel test of distributing a rectangle onto 3 processors
    """


    myid = par.rank()
    par.numprocs = par.size()

    if not par.numprocs == 3: return

    #print par.numprocs

    par.barrier()

    if myid == 0:

        points, vertices, boundary = rectangular_cross(2,2)

        domain = Domain(points, vertices, boundary)


        domain.set_quantity('elevation', topography) # Use function for elevation
        domain.set_quantity('friction', 0.0)         # Constant friction
        domain.set_quantity('stage', expression='elevation') # Dry initial stage
        domain.set_quantity('xmomentum', expression='friction + 2.0') #
        domain.set_quantity('ymomentum', ycoord) #

        #----------------------------------------------------------------------------------
        # Test pmesh_divide_metis
        #----------------------------------------------------------------------------------
        nodes, triangles, boundary, triangles_per_proc, quantities = pmesh_divide_metis(domain,par.numprocs)

        assert_(num.allclose(nodes,points))

        true_vertices = [[0, 9, 1], [3, 9, 0], [4, 9, 3], [1, 9, 4], [1, 10, 2], [4, 10, 1], [5, 10, 4], [2, 10, 5], [3, 11, 4], [6, 11, 3], [7, 11, 6], [4, 11, 7], [4, 12, 5], [7, 12, 4], [8, 12, 7], [5, 12, 8]]

        true_triangles = [[4, 9, 3], [4, 12, 5], [7, 12, 4], [8, 12, 7], [5, 12, 8], [0, 9, 1], [1, 9, 4], [1, 10, 2], [4, 10, 1], [5, 10, 4], [2, 10, 5], [3, 9, 0], [3, 11, 4], [6, 11, 3], [7, 11, 6], [4, 11, 7]]

        assert_(num.allclose(vertices,true_vertices))
        assert_(num.allclose(triangles,true_triangles))

        assert_(num.allclose(triangles_per_proc,[5,6,5]))


        #----------------------------------------------------------------------------------
        # Test build_submesh
        #----------------------------------------------------------------------------------
        submesh = build_submesh(nodes, triangles, boundary, quantities, triangles_per_proc)


        assert_(num.allclose(submesh['full_nodes'][0],[[3.0, 0.5, 0.0], [4.0, 0.5, 0.5], [5.0, 0.5, 1.0], [7.0, 1.0, 0.5], [8.0, 1.0, 1.0], [9.0, 0.25, 0.25], [12.0, 0.75, 0.75]]))
        assert_(num.allclose(submesh['full_nodes'][1],[[0.0, 0.0, 0.0], [1.0, 0.0, 0.5], [2.0, 0.0, 1.0], [4.0, 0.5, 0.5], [5.0, 0.5, 1.0], [9.0, 0.25, 0.25], [10.0, 0.25, 0.75]]))
        assert_(num.allclose(submesh['full_nodes'][2],[[0.0, 0.0, 0.0], [3.0, 0.5, 0.0], [4.0, 0.5, 0.5], [6.0, 1.0, 0.0], [7.0, 1.0, 0.5], [9.0, 0.25, 0.25], [11.0, 0.75, 0.25]]))


        assert_(num.allclose(submesh['ghost_nodes'][0],[[0.0, 0.0, 0.0], [1.0, 0.0, 0.5], [2.0, 0.0, 1.0], [6.0, 1.0, 0.0], [10.0, 0.25, 0.75], [11.0, 0.75, 0.25]]))
        assert_(num.allclose(submesh['ghost_nodes'][1],[[3.0, 0.5, 0.0], [7.0, 1.0, 0.5], [8.0, 1.0, 1.0], [11.0, 0.75, 0.25], [12.0, 0.75, 0.75]]))
        assert_(num.allclose(submesh['ghost_nodes'][2],[[1.0, 0.0, 0.5], [5.0, 0.5, 1.0], [8.0, 1.0, 1.0], [12.0, 0.75, 0.75]]))



        true_full_triangles = [num.array([[ 4,  9,  3],
                                          [ 4, 12,  5],
                                          [ 7, 12,  4],
                                          [ 8, 12,  7],
                                          [ 5, 12,  8]]),
                               num.array([[ 0,  9,  1],
                                          [ 1,  9,  4],
                                          [ 1, 10,  2],
                                          [ 4, 10,  1],
                                          [ 5, 10,  4],
                                          [ 2, 10,  5]]),
                               num.array([[ 3,  9,  0],
                                          [ 3, 11,  4],
                                          [ 6, 11,  3],
                                          [ 7, 11,  6],
                                          [ 4, 11,  7]])]


        assert_(num.allclose(submesh['full_triangles'][0],true_full_triangles[0]))
        assert_(num.allclose(submesh['full_triangles'][1],true_full_triangles[1]))
        assert_(num.allclose(submesh['full_triangles'][2],true_full_triangles[2]))

        true_ghost_triangles = [num.array([[ 5,  0,  9,  1],
                                           [ 6,  1,  9,  4],
                                           [ 8,  4, 10,  1],
                                           [ 9,  5, 10,  4],
                                           [10,  2, 10,  5],
                                           [11,  3,  9,  0],
                                           [12,  3, 11,  4],
                                           [13,  6, 11,  3],
                                           [14,  7, 11,  6],
                                           [15,  4, 11,  7]]),
                                num.array([[ 0,  4,  9,  3],
                                           [ 1,  4, 12,  5],
                                           [ 2,  7, 12,  4],
                                           [ 4,  5, 12,  8],
                                           [11,  3,  9,  0],
                                           [12,  3, 11,  4]]),
                                num.array([[ 0,  4,  9,  3],
                                           [ 1,  4, 12,  5],
                                           [ 2,  7, 12,  4],
                                           [ 3,  8, 12,  7],
                                           [ 5,  0,  9,  1],
                                           [ 6,  1,  9,  4]])]



        assert_(num.allclose(submesh['ghost_triangles'][0],true_ghost_triangles[0]))
        assert_(num.allclose(submesh['ghost_triangles'][1],true_ghost_triangles[1]))
        assert_(num.allclose(submesh['ghost_triangles'][2],true_ghost_triangles[2]))

        true_full_commun = [{0: [1, 2], 1: [1, 2], 2: [1, 2], 3: [2], 4: [1]}, {5: [0, 2], 6: [0, 2], 7: [], 8: [0], 9: [0], 10: [0]}, {11: [0, 1], 12: [0, 1], 13: [0], 14: [0], 15: [0]}]

        assert_(true_full_commun == submesh['full_commun'])


        true_ghost_commun = [num.array([[ 5,  1],
                                        [ 6,  1],
                                        [ 8,  1],
                                        [ 9,  1],
                                        [10,  1],
                                        [11,  2],
                                        [12,  2],
                                        [13,  2],
                                        [14,  2],
                                        [15,  2]]),
                             num.array([[ 0,  0],
                                        [ 1,  0],
                                        [ 2,  0],
                                        [ 4,  0],
                                        [11,  2],
                                        [12,  2]]),
                             num.array([[0, 0],
                                        [1, 0],
                                        [2, 0],
                                        [3, 0],
                                        [5, 1],
                                        [6, 1]])]

        assert_(num.allclose(submesh['ghost_commun'][0],true_ghost_commun[0]))
        assert_(num.allclose(submesh['ghost_commun'][1],true_ghost_commun[1]))
        assert_(num.allclose(submesh['ghost_commun'][2],true_ghost_commun[2]))



    par.barrier()
    #--------------------------------
    # Now do the comunnication part
    #--------------------------------


    if myid == 0:
        #----------------------------------------------------------------------------------
        # Test send_submesh
        #----------------------------------------------------------------------------------
        for p in range(1, par.numprocs):
            send_submesh(submesh, triangles_per_proc, p, verbose=False)

        #----------------------------------------------------------------------------------
        # Test extract_submesh
        #----------------------------------------------------------------------------------
        points, vertices, boundary, quantities, \
                ghost_recv_dict, full_send_dict, tri_map, node_map, ghost_layer_width =\
        extract_submesh(submesh, triangles_per_proc)


        true_points =  [[0.5, 0.0], [0.5, 0.5], [0.5, 1.0], [1.0, 0.5], [1.0, 1.0], [0.25, 0.25], [0.75, 0.75], [0.0, 0.0], [0.0, 0.5], [0.0, 1.0], [1.0, 0.0], [0.25, 0.75], [0.75, 0.25]]

        true_vertices = [[1, 5, 0], [1, 6, 2], [3, 6, 1], [4, 6, 3], [2, 6, 4], [7, 5, 8], [8, 5, 1], [1, 11, 8], [2, 11, 1], [9, 11, 2], [0, 5, 7], [0, 12, 1], [10, 12, 0], [3, 12, 10], [1, 12, 3]]


        true_ghost_recv = {1: [num.array([5, 6, 7, 8, 9]), num.array([ 5,  6,  8,  9, 10])], 2: [num.array([10, 11, 12, 13, 14]), num.array([11, 12, 13, 14, 15])]}


        true_full_send = {1: [num.array([0, 1, 2, 4]), num.array([0, 1, 2, 4])], 2: [num.array([0, 1, 2, 3]), num.array([0, 1, 2, 3])]}

        assert_(num.allclose(ghost_layer_width,  2))
        assert_(num.allclose(points,   true_points))
        assert_(num.allclose(vertices, true_vertices))
        assert_(num.allclose(ghost_recv_dict[1],true_ghost_recv[1]))
        assert_(num.allclose(ghost_recv_dict[2],true_ghost_recv[2]))
        assert_(num.allclose(full_send_dict[1],true_full_send[1]))
        assert_(num.allclose(full_send_dict[2],true_full_send[2]))

        #print triangles_per_proc

    else:
        #----------------------------------------------------------------------------------
        # Test rec_submesh
        #----------------------------------------------------------------------------------
        points, vertices, boundary, quantities, \
                ghost_recv_dict, full_send_dict, \
                no_full_nodes, no_full_trigs, tri_map, node_map, ghost_layer_width  = \
                rec_submesh(0, verbose=False)

        if myid == 1:


            true_points =  [[0.0, 0.0], [0.0, 0.5], [0.0, 1.0], [0.5, 0.5], [0.5, 1.0], [0.25, 0.25], [0.25, 0.75], [0.5, 0.0], [1.0, 0.5], [1.0, 1.0], [0.75, 0.25], [0.75, 0.75]]

            true_vertices =  [[0, 5, 1], [1, 5, 3], [1, 6, 2], [3, 6, 1], [4, 6, 3], [2, 6, 4], [3, 5, 7], [3, 11, 4], [8, 11, 3], [4, 11, 9], [7, 5, 0], [7, 10, 3]]

            true_ghost_recv =  {0: [num.array([6, 7, 8, 9]), num.array([0, 1, 2, 4])], 2: [num.array([10, 11]), num.array([11, 12])]}

            true_full_send =  {0: [num.array([0, 1, 3, 4, 5]), num.array([ 5,  6,  8,  9, 10])], 2: [num.array([0, 1]), num.array([5, 6])]}

            true_tri_map  = num.array([ 6,  7,  8, -1,  9,  0, 1,  2,  3,  4,  5, 10, 11])

            true_node_map = num.array([ 0,  1,  2,  7,  3,  4, -1,  8,  9,  5,  6, 10, 11])

            assert_(num.allclose(ghost_layer_width,  2))
            assert_(num.allclose(tri_map,   true_tri_map))
            assert_(num.allclose(node_map,   true_node_map))
            assert_(num.allclose(points,   true_points))
            assert_(num.allclose(vertices, true_vertices))
            assert_(num.allclose(ghost_recv_dict[0],true_ghost_recv[0]))
            assert_(num.allclose(ghost_recv_dict[2],true_ghost_recv[2]))
            assert_(num.allclose(full_send_dict[0],true_full_send[0]))
            assert_(num.allclose(full_send_dict[2],true_full_send[2]))


        if myid == 2:

            true_points =   [[0.0, 0.0], [0.5, 0.0], [0.5, 0.5], [1.0, 0.0], [1.0, 0.5], [0.25, 0.25], [0.75, 0.25], [0.0, 0.5], [0.5, 1.0], [1.0, 1.0], [0.75, 0.75]]

            true_vertices =  [[1, 5, 0], [1, 6, 2], [3, 6, 1], [4, 6, 3], [2, 6, 4], [2, 5, 1], [2, 10, 8], [4, 10, 2], [9, 10, 4], [0, 5, 7], [7, 5, 2]]

            true_ghost_recv =   {0: [num.array([5, 6, 7, 8]), num.array([0, 1, 2, 3])], 1: [num.array([ 9, 10]), num.array([5, 6])]}

            true_full_send =   {0: [num.array([0, 1, 2, 3, 4]), num.array([11, 12, 13, 14, 15])], 1: [num.array([0, 1]), num.array([11, 12])]}

            true_tri_map  = num.array([5, 6, 7, 8, -1, 9, 10, -1, -1, -1, -1, 0, 1, 2, 3, 4, -1])

            true_node_map = num.array([ 0,  7, -1,  1,  2,  8 , 3,  4,  9,  5, -1,  6, 10])

            assert_(num.allclose(ghost_layer_width,  2))
            assert_(num.allclose(tri_map,   true_tri_map))
            assert_(num.allclose(node_map,   true_node_map))
            assert_(num.allclose(points,   true_points))
            assert_(num.allclose(vertices, true_vertices))
            assert_(num.allclose(ghost_recv_dict[0],true_ghost_recv[0]))
            assert_(num.allclose(ghost_recv_dict[1],true_ghost_recv[1]))
            assert_(num.allclose(full_send_dict[0],true_full_send[0]))
            assert_(num.allclose(full_send_dict[1],true_full_send[1]))
Example #25
0
from anuga import Domain
from anuga import myid, finalize, distribute

args = anuga.get_args()
alg = args.alg
verbose = args.verbose

if myid == 0:
    #---------
    #Setup computational domain
    #---------
    points, vertices, boundary = anuga.rectangular_cross(100,
                                                         3,
                                                         len1=1.0,
                                                         len2=0.03)
    domain = Domain(points, vertices, boundary)  # Create Domain
    domain.set_name('runup')  # Output to file runup.sww
    domain.set_datadir('.')  # Use current folder
    domain.set_quantities_to_be_stored({
        'stage': 2,
        'xmomentum': 2,
        'ymomentum': 2,
        'elevation': 1
    })
    domain.set_flow_algorithm(alg)

    #------------------
    # Define topography
    #------------------
    def topography(x, y):
        return -x / 2  #Linear bed slope
Example #26
0
    def test_rate_operator_negative_rate(self):
        from anuga.config import rho_a, rho_w, eta_w
        from math import pi, cos, sin

        a = [0.0, 0.0]
        b = [0.0, 2.0]
        c = [2.0, 0.0]
        d = [0.0, 4.0]
        e = [2.0, 2.0]
        f = [4.0, 0.0]

        points = [a, b, c, d, e, f]
        #             bac,     bce,     ecf,     dbe
        vertices = [[1, 0, 2], [1, 2, 4], [4, 2, 5], [3, 1, 4]]

        domain = Domain(points, vertices)

        #Flat surface with 1m of water
        domain.set_quantity('elevation', 0)
        domain.set_quantity('stage', 1.0)
        domain.set_quantity('friction', 0)

        Br = Reflective_boundary(domain)
        domain.set_boundary({'exterior': Br})

        #        print domain.quantities['elevation'].centroid_values
        #        print domain.quantities['stage'].centroid_values
        #        print domain.quantities['xmomentum'].centroid_values
        #        print domain.quantities['ymomentum'].centroid_values

        # Apply operator to these triangles
        indices = [0, 1, 3]

        #Catchment_Rain_Polygon = read_polygon(join('CatchmentBdy.csv'))
        #rainfall = file_function(join('1y120m.tms'), quantities=['rainfall'])
        rate = -1.0
        factor = 10.0
        default_rate = 0.0

        operator = Rate_operator(domain, rate=rate, factor=factor, \
                      indices=indices, default_rate = default_rate)

        # Apply Operator
        domain.timestep = 2.0
        operator()

        stage_ex = [0., 0., 1., 0.]
        step_integral = -6.0

        #print domain.quantities['elevation'].centroid_values
        #print domain.quantities['stage'].centroid_values
        #print domain.quantities['xmomentum'].centroid_values
        #print domain.quantities['ymomentum'].centroid_values
        #print domain.fractional_step_volume_integral
        #print factor*domain.timestep*(rate*domain.areas[indices]).sum()

        #increment = factor*domain.timestep*rate*domain.areas

        assert num.allclose(domain.quantities['stage'].centroid_values,
                            stage_ex)
        assert num.allclose(domain.quantities['xmomentum'].centroid_values,
                            0.0)
        assert num.allclose(domain.quantities['ymomentum'].centroid_values,
                            0.0)
        assert num.allclose(domain.fractional_step_volume_integral,
                            step_integral)

        # test timestepping_statistics
        stats = operator.timestepping_statistics()
        import re
        rr = re.findall("[-+]?[.]?[\d]+(?:,\d\d\d)*[\.]?\d*(?:[eE][-+]?\d+)?",
                        stats)
        assert num.allclose(float(rr[1]), -1.0)
        assert num.allclose(float(rr[2]), -60.0)
#start_screen_catcher(output_dir+'_')


#------------------------------------------------------------------------------
# Setup domain
#------------------------------------------------------------------------------
dx = 0.25
dy = dx
L = 20.
W = 5.

# structured mesh
points, vertices, boundary = anuga.rectangular_cross(int(L/dx), int(W/dy), L, W, (-L/2.0, -W/2.0))

#domain = anuga.Domain(points, vertices, boundary) 
domain = Domain(points, vertices, boundary) 

domain.set_name(output_file)                
domain.set_datadir(output_dir) 

#------------------------------------------------------------------------------
# Setup Algorithm, either using command line arguments
# or override manually yourself
#------------------------------------------------------------------------------
from anuga.utilities.argparsing import parse_standard_args
alg = parse_standard_args()
domain.set_flow_algorithm(alg)


#------------------------------------------------------------------------------
# Setup initial conditions
Example #28
0
    def test_rate_operator_rate_from_file(self):
        from anuga.config import rho_a, rho_w, eta_w
        from math import pi, cos, sin

        a = [0.0, 0.0]
        b = [0.0, 2.0]
        c = [2.0, 0.0]
        d = [0.0, 4.0]
        e = [2.0, 2.0]
        f = [4.0, 0.0]

        points = [a, b, c, d, e, f]
        #             bac,     bce,     ecf,     dbe
        vertices = [[1, 0, 2], [1, 2, 4], [4, 2, 5], [3, 1, 4]]

        #---------------------------------
        #Typical ASCII file
        #---------------------------------
        finaltime = 1200
        filename = 'test_file_function'
        fid = open(filename + '.txt', 'w')
        start = time.mktime(time.strptime('2000', '%Y'))
        dt = 60  #One minute intervals
        t = 0.0
        while t <= finaltime:
            t_string = time.strftime(time_format, time.gmtime(t + start))
            fid.write('%s, %f %f %f\n' %
                      (t_string, 2 * t, t**2, sin(old_div(t * pi, 600))))
            t += dt

        fid.close()

        #Convert ASCII file to NetCDF (Which is what we really like!)
        timefile2netcdf(filename + '.txt')

        #Create file function from time series
        F = file_function(
            filename + '.tms',
            quantities=['Attribute0', 'Attribute1', 'Attribute2'])

        #Now try interpolation
        for i in range(20):
            t = i * 10
            q = F(t)

            #Exact linear intpolation
            assert num.allclose(q[0], 2 * t)
            if i % 6 == 0:
                assert num.allclose(q[1], t**2)
                assert num.allclose(q[2], sin(old_div(t * pi, 600)))

        #Check non-exact

        t = 90  #Halfway between 60 and 120
        q = F(t)
        assert num.allclose(old_div((120**2 + 60**2), 2), q[1])
        assert num.allclose(
            old_div((sin(old_div(120 * pi, 600)) + sin(old_div(60 * pi, 600))),
                    2), q[2])

        t = 100  #Two thirds of the way between between 60 and 120
        q = F(t)
        assert num.allclose(old_div(2 * 120**2, 3) + old_div(60**2, 3), q[1])
        assert num.allclose(
            old_div(2 * sin(old_div(120 * pi, 600)), 3) +
            old_div(sin(old_div(60 * pi, 600)), 3), q[2])

        #os.remove(filename + '.txt')
        #os.remove(filename + '.tms')

        domain = Domain(points, vertices)

        #Flat surface with 1m of water
        domain.set_quantity('elevation', 0)
        domain.set_quantity('stage', 1.0)
        domain.set_quantity('friction', 0)

        Br = Reflective_boundary(domain)
        domain.set_boundary({'exterior': Br})

        #        print domain.quantities['elevation'].centroid_values
        #        print domain.quantities['stage'].centroid_values
        #        print domain.quantities['xmomentum'].centroid_values
        #        print domain.quantities['ymomentum'].centroid_values

        # Apply operator to these triangles
        indices = [0, 1, 3]

        rate = file_function(filename + '.tms', quantities=['Attribute1'])

        # Make starttime of domain consistent with tms file starttime
        domain.set_starttime(rate.starttime)

        factor = 1000.0
        default_rate = 17.7

        operator = Rate_operator(domain, rate=rate, factor=factor, \
                      indices=indices, default_rate = default_rate)

        # Apply Operator
        domain.set_time(360.0)
        domain.timestep = 1.0

        operator()

        d = domain.get_time()**2 * factor + 1.0
        stage_ex0 = [d, d, 1., d]

        #        print d, domain.get_time(), F(360.0)

        #        print domain.quantities['elevation'].centroid_values
        #        print domain.quantities['stage'].centroid_values
        #        print domain.quantities['xmomentum'].centroid_values
        #        print domain.quantities['ymomentum'].centroid_values

        assert num.allclose(domain.quantities['stage'].centroid_values,
                            stage_ex0)
        assert num.allclose(domain.quantities['xmomentum'].centroid_values,
                            0.0)
        assert num.allclose(domain.quantities['ymomentum'].centroid_values,
                            0.0)
        assert num.allclose(domain.fractional_step_volume_integral,
                            ((d - 1.) * domain.areas[indices]).sum())

        domain.set_time(1300.0)
        domain.timestep = 1.0

        operator()

        d = default_rate * factor + d
        stage_ex1 = [d, d, 1., d]

        #         print domain.quantities['elevation'].centroid_values
        #         print domain.quantities['stage'].centroid_values
        #         print domain.quantities['xmomentum'].centroid_values
        #         print domain.quantities['ymomentum'].centroid_values

        assert num.allclose(domain.quantities['stage'].centroid_values,
                            stage_ex1)
        assert num.allclose(domain.quantities['xmomentum'].centroid_values,
                            0.0)
        assert num.allclose(domain.quantities['ymomentum'].centroid_values,
                            0.0)
        assert num.allclose(domain.fractional_step_volume_integral,
                            ((d - 1.) * domain.areas[indices]).sum())

        tmp = numpy.zeros_like(domain.quantities['stage'].centroid_values)
        tmp[:] = domain.quantities['stage'].centroid_values

        d0 = domain.fractional_step_volume_integral

        domain.set_time(-10.0)
        domain.timestep = 1.0

        operator()

        d = default_rate * factor
        stage_ex2 = numpy.array([d, d, 0., d]) + numpy.array(stage_ex1)

        assert num.allclose(domain.quantities['stage'].centroid_values,
                            stage_ex2)
        assert num.allclose(domain.quantities['xmomentum'].centroid_values,
                            0.0)
        assert num.allclose(domain.quantities['ymomentum'].centroid_values,
                            0.0)
        assert num.allclose(domain.fractional_step_volume_integral,
                            d0 + (d * domain.areas[indices]).sum())

        # test timestepping_statistics
        stats = operator.timestepping_statistics()
        import re
        rr = re.findall("[-+]?[.]?[\d]+(?:,\d\d\d)*[\.]?\d*(?:[eE][-+]?\d+)?",
                        stats)
        assert num.allclose(float(rr[1]), 17.7)
        assert num.allclose(float(rr[2]), 106200.0)
Example #29
0
    def test_rate_operator_functions_spatial_with_ghost(self):
        from anuga.config import rho_a, rho_w, eta_w
        from math import pi, cos, sin

        a = [0.0, 0.0]
        b = [0.0, 2.0]
        c = [2.0, 0.0]
        d = [0.0, 4.0]
        e = [2.0, 2.0]
        f = [4.0, 0.0]

        points = [a, b, c, d, e, f]
        #             bac,     bce,     ecf,     dbe
        vertices = [[1, 0, 2], [1, 2, 4], [4, 2, 5], [3, 1, 4]]

        domain = Domain(points, vertices)

        area = numpy.sum(domain.areas)

        #Flat surface with 1m of water
        domain.set_quantity('elevation', 0.0)
        domain.set_quantity('stage', 1.0)
        domain.set_quantity('friction', 0.0)

        Br = Reflective_boundary(domain)
        domain.set_boundary({'exterior': Br})

        verbose = False

        if verbose:
            print(domain.quantities['elevation'].centroid_values)
            print(domain.quantities['stage'].centroid_values)
            print(domain.quantities['xmomentum'].centroid_values)
            print(domain.quantities['ymomentum'].centroid_values)

        # Apply operator to these triangles
        factor = 10.0

        def main_spatial_rate(x, y, t):
            # x and y should be an n by 1 array
            return x + y

        default_rate = 0.0

        # kludge to make a ghost cell
        domain.tri_full_flag[1] = 0

        operator = Rate_operator(domain, rate=main_spatial_rate, factor=factor, \
                      default_rate = default_rate)

        # Apply Operator
        domain.timestep = 2.0
        operator()

        t = operator.get_time()
        Q_all = operator.get_Q(full_only=False)
        Q_full = operator.get_Q()
        x = operator.coord_c[:, 0]
        y = operator.coord_c[:, 1]
        rate = main_spatial_rate(x, y, t) * factor
        Q_ex_all = num.sum(domain.areas * rate)
        Q_ex_full = num.sum(
            num.where(domain.tri_full_flag == 1, domain.areas * rate, 0.0))
        d = operator.get_timestep() * rate + 1

        #print "d"
        #print d
        #print Q_ex_full, Q_ex_all
        stage_ex = num.array([1.0, 1.0, 1.0, 1.0])
        stage_ex[:] = d

        if verbose:
            print(domain.quantities['elevation'].centroid_values)
            print(domain.quantities['stage'].centroid_values)
            print(domain.quantities['xmomentum'].centroid_values)
            print(domain.quantities['ymomentum'].centroid_values)

        assert num.allclose(domain.quantities['stage'].centroid_values,
                            stage_ex)
        assert num.allclose(domain.quantities['xmomentum'].centroid_values,
                            0.0)
        assert num.allclose(domain.quantities['ymomentum'].centroid_values,
                            0.0)
        assert num.allclose(Q_ex_all, Q_all)
        assert num.allclose(Q_ex_full, Q_full)
        assert num.allclose(domain.fractional_step_volume_integral,
                            ((d - 1.) * domain.areas *
                             domain.tri_full_flag).sum())

        # test timestepping_statistics
        stats = operator.timestepping_statistics()
        import re
        rr = re.findall("[-+]?[.]?[\d]+(?:,\d\d\d)*[\.]?\d*(?:[eE][-+]?\d+)?",
                        stats)

        assert num.allclose(float(rr[1]), 1.33333)
        assert num.allclose(float(rr[2]), 3.33333)
        assert num.allclose(float(rr[3]), 160.0)
dx = dy = 2

points, vertices, boundary = rectangular_cross(int(length/dx), int(width/dy),
                                               len1=length, len2=width)


"""
Must include the process-specific quantities when creating the domain
"""        
evolved_quantities =  ['stage', 'xmomentum', 'ymomentum', 'concentration']

other_quantities=['elevation', 'friction', 'height', 'xvelocity', \
                  'yvelocity', 'x', 'y', 'vegetation', 'diffusivity']
                  
                  
domain = Domain(points, vertices, boundary, evolved_quantities = evolved_quantities, other_quantities = other_quantities)



domain.set_flow_algorithm('1_75')
domain.set_name('run_simple_sed_transport_veg') # Output name
domain.set_store_vertices_uniquely(True)
domain.set_quantity('elevation', topography)           # elevation is a function
domain.set_quantity('stage', expression='elevation')   # Dry initial condition

print domain.statistics()

"""
Store process-specific quantities with same functions
""" 
domain.set_quantities_to_be_stored({'elevation': 2,