Example #1
0
    def test_jupyter_tutorial_tapers(self):
        client = Client("IRIS")
        t = UTCDateTime("2018-12-25 12:00:00").timestamp
        st = client.get_waveforms("UU",
                                  "SPU",
                                  "*",
                                  "H*",
                                  t,
                                  t + 10 * 60,
                                  attach_response=True)
        pre_filt = (0.01, 0.03, 40.0, 45.0)
        st = anxcor_utils.remove_response(st,
                                          output='DISP',
                                          pre_filt=pre_filt,
                                          zero_mean=True,
                                          taper=True)
        converter = XArrayConverter()
        resampler = XArrayResample(target_rate=10.0)
        rmmean_trend = XArrayRemoveMeanTrend()

        xarray = converter(st)
        resampled_array = resampler(xarray)
        rmm_array = rmmean_trend(resampled_array)
        whitening_op = XArrayWhiten(taper=0.05,
                                    whiten_type='cross_component',
                                    freqmax=3.0,
                                    freqmin=0.01,
                                    smoothing_window_ratio=0.01)

        whitened_array = whitening_op(rmm_array)
        assert whitened_array.data[0, 0, 0] == pytest.approx(0, abs=1e-2)
Example #2
0
 def test_jupyter_example(self):
     client = Client("IRIS")
     t = UTCDateTime("2018-12-25 12:00:00").timestamp
     st = client.get_waveforms("UU",
                               "SPU",
                               "*",
                               "H*",
                               t,
                               t + 10 * 60,
                               attach_response=True)
     pre_filt = (0.01, 0.03, 40.0, 45.0)
     st = anxcor_utils.remove_response(st,
                                       output='DISP',
                                       pre_filt=pre_filt,
                                       zero_mean=True,
                                       taper=True)
     converter = XArrayConverter()
     resampler = XArrayResample(target_rate=10.0)
     rmmean_trend = XArrayRemoveMeanTrend()
     temp_normalizer = XArrayTemporalNorm(t_norm_type='reduce_metric',
                                          freqmin=0.001,
                                          freqmax=0.1,
                                          time_window=2.0,
                                          rolling_procedure='mean',
                                          reduce_metric='max')
     xarray = converter(st)
     resampled_array = resampler(xarray)
     rmm_array = rmmean_trend(resampled_array)
     t_normed_array = temp_normalizer(rmm_array)
     assert True
Example #3
0
    def test_variable_type(self):
        # first, make a noise trace and shift it by tau * sampling rate\
        file = source_file
        duration = 400
        shift = 30
        noise_loc_1 = create_random_trace(sampling_rate=40, duration=duration)
        noise_loc_1[0].data += create_random_trace(sampling_rate=40,
                                                   duration=duration)[0].data
        noise_loc_1 = convert(noise_loc_1)
        noise_loc_2 = xr.apply_ufunc(shift_trace,
                                     noise_loc_1,
                                     input_core_dims=[['time']],
                                     output_core_dims=[['time']],
                                     kwargs={
                                         'time': shift,
                                         'delta': noise_loc_1.attrs['delta']
                                     },
                                     keep_attrs=True)

        # next, add an eq teleseism from file to both noise streams

        noise_loc_1_eq = noise_loc_1.copy()

        down = XArrayResample(10)
        t_norm = XArrayTemporalNorm(time_window=2.0)

        noise_loc_2_eq = down(noise_loc_1_eq)

        noise_loc_2_eq_tnorm = t_norm(noise_loc_2_eq)

        assert noise_loc_2_eq_tnorm.dtype == np.float64
Example #4
0
 def test_read_resample(self):
     anxcor = Anxcor()
     anxcor.set_window_length(120.0)
     times = anxcor.get_starttimes(starttime_stamp,endtime_stamp, 0.5)
     bank = WavebankWrapper(source_dir)
     anxcor.add_dataset(bank, 'nodals')
     anxcor.add_process(XArrayResample(target_rate=10.0))
     anxcor.save_at_process(target_dir,'resample:0')
     result = anxcor.process(times)
     anxcor = Anxcor()
     anxcor.set_window_length(120.0)
     anxcor.add_process(XArrayResample(target_rate=10.0))
     bank = WavebankWrapper(source_dir)
     anxcor.add_dataset(bank, 'nodals')
     anxcor.load_at_process(target_dir, 'resample:0')
     result = anxcor.process(times)
     how_many_nc = _how_many_fmt(target_dir, format='.nc')
     _clean_files_in_dir(target_dir)
     assert 20 == how_many_nc
    def test_increase_earthquake_shift_time_xcorr_func(self):
        # first, make a noise trace and shift it by tau * sampling rate\
        file = source_file
        duration = 400
        shift = 3
        noise_loc_1 = create_random_trace(sampling_rate=40, duration=duration)
        noise_loc_1[0].data+= create_random_trace(sampling_rate=40, duration=duration)[0].data
        noise_loc_1 = convert(noise_loc_1,starttime=0,station=0)
        noise_loc_2 = xr.apply_ufunc(shift_trace, noise_loc_1, input_core_dims=[['time']],
                                     output_core_dims=[['time']],
                                     kwargs={'time': shift, 'delta': noise_loc_1.attrs['delta']}, keep_attrs=True)

        # next, add an eq teleseism from file to both noise streams

        noise_loc_1_eq = noise_loc_1.copy()
        noise_loc_2_eq = noise_loc_2.copy()

        attrs = noise_loc_1.attrs

        source_eq   = source_earthquake()
        noise_loc_1_eq[:, :, :source_eq.data.shape[2]] += source_eq.data[:, :, :]
        noise_loc_2_eq[:, :, :source_eq.data.shape[2]] += source_eq.data[:, :, :]

        noise_loc_1.attrs = attrs
        noise_loc_2.attrs = attrs
        noise_loc_2_eq.attrs = attrs
        noise_loc_1_eq.attrs = attrs

        # downsample both to 10hz sampling rate

        down   = XArrayResample(10)
        t_norm =XArrayTemporalNorm(time_window=2.0)

        noise_loc_1_eq = down(noise_loc_1_eq)
        noise_loc_2_eq = down(noise_loc_2_eq)

        noise_loc_2_eq_tnorm = t_norm(noise_loc_2_eq.copy())
        noise_loc_1_eq_tnorm = t_norm(noise_loc_1_eq.copy())


        x_corr_eq      = self.max_corr_norm(noise_loc_1_eq, noise_loc_2_eq)
        x_corr_eq_tnorm= self.max_corr_norm(noise_loc_1_eq_tnorm, noise_loc_2_eq_tnorm)

        zero_index     = len(x_corr_eq)//2


        assert x_corr_eq[zero_index+int(40*shift)] < x_corr_eq_tnorm[zero_index+int(40*shift)]
Example #6
0
    def test_phase_shift_not_introduced(self):
        target_rate = 20
        process = XArrayResample(target_rate=target_rate)
        trace_initial = converter(
            create_sinsoidal_trace(sampling_rate=100, period=0.5,
                                   duration=0.5))
        trace_processed = converter(
            create_sinsoidal_trace(sampling_rate=100, period=0.5,
                                   duration=0.5))
        trace_processed = process(trace_processed)
        target = np.argmax(
            trace_initial.data.ravel()) * trace_initial.attrs['delta']
        source = np.argmax(
            trace_processed.data.ravel()) * trace_processed.attrs['delta']

        assert round(abs(target - source), int(np.log10(
            1 / target_rate))) == 0, "filter introduced phase shift"