def main():
    # bq_source = BigQuerySource(query="""
    #                            SELECT created_at, text
    #                            FROM got_sentiment.got_tweets
    #                            """,
    #                            validate=False, coder=None,
    #                            use_standard_sql=True, flatten_results=True,
    #                            kms_key=None)

    # Removed attributes from ReadFromPubSub:
    #                              with_attributes=False,
    #                             timestamp_attribute='created_at'

    # Create the Pipeline with the specified options.
    with Pipeline(options=options) as p:
        results = (
            p | 'read_from_topic' >> ReadFromPubSub(topic=PUBSUB_TOPIC)
            | 'Window' >> WindowInto(window.FixedWindows(60))
            | 'Emit_needed_values' >> FlatMap(emit_values, entity_map)
            | 'Combine' >> CombinePerKey(EntityScoreCombine())
            | 'Add Window Timestamp' >> beam.ParDo(AddWindowTimestampFn())
            | 'FormatForWrite' >> Map(format_for_write)
            | 'Write' >> WriteToBigQuery('streaming_scores',
                                         dataset=BQ_DATASET,
                                         project=PROJECT_ID,
                                         create_disposition='CREATE_IF_NEEDED',
                                         write_disposition='WRITE_APPEND',
                                         batch_size=20))
    def test(self):
        def format_record(record):
            import base64
            return base64.b64encode(record[1])

        def make_insert_mutations(element):
            import uuid  # pylint: disable=reimported
            from apache_beam.io.gcp.experimental.spannerio import WriteMutation
            ins_mutation = WriteMutation.insert(table='test',
                                                columns=('id', 'data'),
                                                values=[(str(uuid.uuid1()),
                                                         element)])
            return [ins_mutation]

        (  # pylint: disable=expression-not-assigned
            self.pipeline
            | 'Produce rows' >> Read(
                SyntheticSource(self.parse_synthetic_source_options()))
            | 'Count messages' >> ParDo(CountMessages(self.metrics_namespace))
            | 'Format' >> Map(format_record)
            | 'Make mutations' >> FlatMap(make_insert_mutations)
            | 'Measure time' >> ParDo(MeasureTime(self.metrics_namespace))
            | 'Write to Spanner' >> WriteToSpanner(
                project_id=self.project,
                instance_id=self.spanner_instance,
                database_id=self.TEST_DATABASE,
                max_batch_size_bytes=5120))
Example #3
0
    def _create_input_data(self):
        """
    Runs an additional pipeline which creates test data and waits for its
    completion.
    """
        def format_record(record):
            import base64
            return base64.b64encode(record[1])

        def make_insert_mutations(element):
            import uuid
            from apache_beam.io.gcp.experimental.spannerio import WriteMutation
            ins_mutation = WriteMutation.insert(table='test_data',
                                                columns=('id', 'data'),
                                                values=[(str(uuid.uuid1()),
                                                         element)])
            return [ins_mutation]

        with TestPipeline() as p:
            (  # pylint: disable=expression-not-assigned
                p
                | 'Produce rows' >> Read(
                    SyntheticSource(self.parse_synthetic_source_options()))
                | 'Format' >> Map(format_record)
                | 'Make mutations' >> FlatMap(make_insert_mutations)
                | 'Write to Spanner' >> WriteToSpanner(
                    project_id=self.project,
                    instance_id=self.spanner_instance,
                    database_id=self.spanner_database,
                    max_batch_size_bytes=5120))
Example #4
0
 def _verify_data(self, pcol, init_size, data_size):
   read = pcol | 'read' >> ReadAllFromParquet()
   v1 = (
       read
       | 'get_number' >> Map(lambda x: x['number'])
       | 'sum_globally' >> CombineGlobally(sum)
       | 'validate_number' >>
       FlatMap(lambda x: TestParquetIT._sum_verifier(init_size, data_size, x)))
   v2 = (
       read
       | 'make_pair' >> Map(lambda x: (x['name'], x['number']))
       | 'count_per_key' >> Count.PerKey()
       | 'validate_name' >> FlatMap(
           lambda x: TestParquetIT._count_verifier(init_size, data_size, x)))
   _ = ((v1, v2, pcol)
        | 'flatten' >> Flatten()
        | 'reshuffle' >> Reshuffle()
        | 'cleanup' >> Map(lambda x: FileSystems.delete([x])))
Example #5
0
def main():
    options = PipelineOptions()
    options.view_as(SetupOptions).save_main_session = True

    p = Pipeline(options=options)
    (p
     | Create(list(range(NUM_SHARDS)))
     | FlatMap(lambda _:
               (bytes(ELEMENT_BYTES) for _ in range(NUM_ELEMENTS_PER_SHARD)))
     | WithKeys('')
     | ParDo(BigBagDoFn()))

    p.run()
Example #6
0
 def expand(self, xs):
     return (xs
             | Map(self.tag_with_id)
             | "Group by id" >> GroupByKey()
             | Map(self.sort_by_time)
             | FlatMap(self.compute_encounters))