Example #1
0
from api.ai import Agent
import json


#initialize the agent 
agent = Agent(
     '<subscription-key>',
     '<client-access-token>',
     '<developer-access-token>',
)

# actions defined in the API.AI console that fire locally when an intent is
# recognized
def saveType(flowerType):
	print 'do something here'

def saveColor(color):
	print 'do something here'

def createOrder(address):
	print 'do something here'

def main():
	user_input = ''

	#loop the queries to API.AI so we can have a conversation client-side
	while user_input != 'exit':

		#parse the user input
		user_input  = raw_input("me: ")
		#query the console with the user input, retrieve the response
Example #2
0
from api.ai import Agent
import json

#initialize the agent 
agent = Agent(
     '<subscription-key>',
     '<7a8781b3255c4780bcf7e383a752fe87>',
     '<8f9d048c2c504a3db06f813bd6b2bc24>',
)

# actions defined in the API.AI console that fire locally when an intent is
# recognized
def saveType(flowerType):
	print 'do something here'

def saveColor(color):
	print 'do something here'

def createOrder(address):
	print 'do something here'

def main():
	user_input = ''

	#loop the queries to API.AI so we can have a conversation client-side
	while user_input != 'exit':

		#parse the user input
		user_input  = raw_input("me: ")
		#query the console with the user input, retrieve the response
		response = agent.query(user_input)
import cv2
import subprocess
import pyaudio
import wikipedia
import speech_recognition as sr
import webbrowser as wb

wake_words = ["wake", "john"]
greeting_phrases = [
    'howdy sir', 'whassup sir', "what's up sir", 'hi sir', 'hello sir',
    'hey sir'
]

agent = Agent(
    '<subscription-key>',
    'd7b00ed0ee08464c860a9f6e8eb7164e',
    '6fef320b63224ce6a42b443ec8428db1',
)


def chat(inp):
    response = agent.query(inp)
    result = response['result']
    fulfillment = result['fulfillment']
    response = fulfillment['speech']
    speak(response)


def exec_command(command):
    os.system(command)
Example #4
0
import kivy
from kivy.app import App
from kivy.uix.gridlayout import GridLayout
from api.ai import Agent
import json

#initialize the agent
agent = Agent(
    '<subscription-key>',
    '9eb285851f6d47a5a1d970e77b16f3de',
    'f1d3838773f04e4bb94dc3706a94647e',
)


class CalcGridLayout(GridLayout):
    def __init__(self):
        super(CalcGridLayout, self).__init__()

    def API_call(self, user_input):
        response = agent.query(user_input)
        result = response['result']
        fulfillment = result['fulfillment']
        return fulfillment['speech']


class calculatorApp(App):
    def build(self):
        return CalcGridLayout()


calcApp = calculatorApp()
Example #5
0
from flask import Flask, render_template, url_for, redirect, request
import os.path, sqlite3
import datetime, time
from nltk.stem.wordnet import WordNetLemmatizer
import nltk, string, random
from api.ai import Agent
import json
from summary import summary

#initialize the agent
agent = Agent(
    'sakd',
    '04f67374d4b14ed68d9f13f70ddfdca8',
    '7b62bcd174784e09ab76acc96be378ed',
)

global MedicalFlag, RetrieveRecordsFlag, UpdateRecordsFlag
MedicalFlag, RetrieveRecordsFlag, UpdateRecordsFlag, NoRecords = False, False, False, True
app = Flask(__name__)


def preprocessing(input_text):
    lst_stop_words = open("stop_words_and_singlish.txt", "r")
    stop_words = []
    for line in lst_stop_words:
        stop_words.append(''.join(line.strip().split("\n")))
    lst_stop_words.close()

    translator_punc = str.maketrans('', '', string.punctuation)
    words = input_text.translate(translator_punc)
    words = words.split()
Example #6
0
#etc
from packages.etc.memes import get_meme_msg
from packages.etc.wisdomsearch import wisdom_search
from packages.etc.weather import weather_msg

#internal libraries
from packages.internal.postbacks import intro_reply, health_reply, bot_menu, subscriptions_reply, current_features_msg

MAX_MESSAGE_LENGTH = 640
app = Flask(__name__)
app.config.update(SECRET_KEY=os.environ['SECRET_KEY'])

agent = Agent(
    'thecolumbialion',
    os.environ['CLIENT_ACCESS_TOKEN'],
    os.environ['DEVELOPER_ACCESS_TOKEN'],
)

page = fbmq.Page(os.environ['ACCESS_TOKEN'], api_ver="v2.11")
page.greeting(
    "Welcome to LionBot! Click below to learn more about what I can do.")
page.show_starting_button("GET_STARTED")
#THE DICT
""" Dictionary of all module interface functions."""
Msg_Fn_Dict = {
    'clubs': clubs_msg,
    'printers': printers_msg,
    'mta_subway_info': mta_subway_info_msg,
    'campus_news_updates': news_msg,
    'tv_network': tv_network_msg,
Example #7
0
import threading
from telebot import types
from pymongo import MongoClient
import traceback
import apiai, json
from api.ai import Agent

token = ''
bot = telebot.TeleBot(token)

neiro = apiai.ApiAI('')
parent = ''

agent = Agent(
    'cipraded',
    '',
    '',
)

training = False
teachers = [268486177, 792414733, 441399484]


@bot.message_handler(commands=['train'])
def ctrain(m):
    pass


@bot.message_handler()
def txt(m):
    response = react(m)
Example #8
0
from api.ai import Agent
import json


#initialize the agent 
agent = Agent(
     '<subscription-key>',
     '841d0b494b1c4abbb587f2bddacd87fc',
     '377275e794464e5cbe74eb66f8ca98b2',
)

# actions defined in the API.AI console that fire locally when an intent is
# recognized
def saveType(flowerType):
	print 'do something here'

def saveColor(color):
	print 'do something here'

def createOrder(address):
	print 'do something here'

def main():
	user_input = ''

	#loop the queries to API.AI so we can have a conversation client-side
	while user_input != 'exit':

		#parse the user input
		user_input  = raw_input("me: ")
		#query the console with the user input, retrieve the response