def test_rawlsian_symmetry(): data = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) y = data.data["x"].tolist() np.random.shuffle(y) df2 = pd.DataFrame({"x": y}) dr2 = ApodeData(df2, income_column="x") assert data.welfare(method="rawlsian") == dr2.welfare(method="rawlsian")
def test_utilitarian_replication(): data = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) k = 2 # factor y = k * data.data["x"].tolist() df2 = pd.DataFrame({"x": y}) dr2 = ApodeData(df2, income_column="x") assert data.welfare("utilitarian") == dr2.welfare("utilitarian")
def test_theilt_replication(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) k = 2 # factor y = k * ad.data["x"].tolist() df2 = pd.DataFrame({"x": y}) ad2 = ApodeData(df2, income_column="x") assert ad.welfare("theilt") == ad2.welfare("theilt")
def test_utilitarian_symmetry(): data = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) y = data.data["x"].tolist() np.random.shuffle(y) df2 = pd.DataFrame({"x": y}) dr2 = ApodeData(df2, income_column="x") np.testing.assert_allclose(data.welfare(method="utilitarian"), dr2.welfare(method="utilitarian"))
def test_theilt_homogeneity(): data = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) k = 2 # factor y = data.data["x"].tolist() y = k * y df2 = pd.DataFrame({"x": y}) dr2 = ApodeData(df2, income_column="x") assert data.welfare("theilt") == dr2.welfare("theilt")
def test_utilitarian_homogeneity(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) k = 2 # factor y = ad.data["x"].tolist() y = k * y df2 = pd.DataFrame({"x": y}) ad2 = ApodeData(df2, income_column="x") assert ad.welfare("utilitarian") == ad2.welfare("utilitarian")
def test_theilt_symmetry(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) y = ad.data["x"].tolist() np.random.shuffle(y) df2 = pd.DataFrame({"x": y}) ad2 = ApodeData(df2, income_column="x") np.testing.assert_allclose(ad.welfare(method="theilt"), ad2.welfare(method="theilt"))