def synth(*args,**kwargs): """ NAME: synth PURPOSE: Generate model APOGEE spectra using MOOG: this is a general routine that generates the non-continuum-normalized spectrum, convolves with the LSF and macrotubulence, and optionally continuum normalizes the output; use 'moogsynth' for a direct interface to MOOG INPUT ARGUMENTS: lists with abundances wrt the atmosphere (they don't all have to have the same length, missing ones are filled in with zeros): [Atomic number1,diff1_1,diff1_2,diff1_3,...,diff1_N] [Atomic number2,diff2_1,diff2_2,diff2_3,...,diff2_N] ... [Atomic numberM,diffM_1,diffM_2,diffM_3,...,diffM_N] INPUT KEYWORDS: LSF: lsf= ('all') LSF to convolve with; output of apogee.spec.lsf.eval; sparsify for efficiency; if 'all' or 'combo' a pre-computed version will be downloaded from the web Either: xlsf= (None) pixel offset grid on which the LSF is computed (see apogee.spec.lsf.eval); unnecessary if lsf=='all' or 'combo' dxlsf= (None) spacing of pixel offsets vmacro= (6.) macroturbulence to apply CONTINUUM: cont= ('aspcap') continuum-normalization to apply: None: no continuum normalization 'true': Use the true continuum 'aspcap': Use the continuum normalization method of ASPCAP DR12 'cannon': Normalize using continuum pixels derived from the Cannon SYNTHESIS: linelist= (None) linelist to use; can be set to the path of a linelist file or to the name of an APOGEE linelist run_weedout= (False) if True, run MOOG weedout on the linelist first wmin, wmax, dw, width= (15000.000, 17000.000, 0.10000000, 7.0000000) spectral synthesis limits, step, and width of calculation (see MOOG) lib= ('kurucz_filled') spectral library MODEL ATMOSPHERE PARAMETERS: Specify one of the following: (a) modelatm= (None) can be set to the filename of a model atmosphere or to a model-atmosphere instance (if filename, needs to end in .mod) (b) parameters of a KURUCZ model atmosphere: (1) teff= (4500) Teff logg= (2.5) logg metals= (0.) metallicity cm= (0.) carbon-enhancement am= (0.) alpha-enhancement (2) fparam= standard ASPCAP output format lib= ('kurucz_filled') model atmosphere library dr= (None) use model atmospheres from this data release vmicro= (2.) microturbulence (only used if the MOOG-formatted atmosphere is not found) (can also be part of fparam) MISCELLANEOUS: dr= return the path corresponding to this data release OUTPUT: spectra (nspec,nwave) HISTORY: 2015-03-15 - Written - Bovy (IAS) """ run_weedout= kwargs.pop('run_weedout',False) # Check that we have the LSF and store the relevant keywords lsf= kwargs.pop('lsf','all') if isinstance(lsf,str): xlsf, lsf= aplsf._load_precomp(dr=kwargs.get('dr',None),fiber=lsf) dxlsf= None else: xlsf= kwargs.pop('xlsf',None) dxlsf= kwargs.pop('dxlsf',None) if xlsf is None and dxlsf is None: raise ValueError('xlsf= or dxlsf= input needs to be given if the LSF is given as an array') vmacro= kwargs.pop('vmacro',6.) # Parse continuum-normalization keywords cont= kwargs.pop('cont','aspcap') # Setup the model atmosphere modelatm= kwargs.pop('modelatm',None) tmpModelAtmDir= False # Parse fparam, if present fparam= kwargs.pop('fparam',None) if not fparam is None: kwargs['teff']= fparam[paramIndx('TEFF')] kwargs['logg']= fparam[paramIndx('LOGG')] kwargs['metals']= fparam[paramIndx('METALS')] kwargs['am']= fparam[paramIndx('ALPHA')] kwargs['cm']= fparam[paramIndx('C')] kwargs['vm']= 10.**fparam[paramIndx('LOG10VDOP')] if modelatm is None: # Setup a model atmosphere modelatm= atlas9.Atlas9Atmosphere(teff=kwargs.get('teff',4500.), logg=kwargs.get('logg',2.5), metals=kwargs.get('metals',0.), am=kwargs.get('am',0.), cm=kwargs.get('cm',0.), dr=kwargs.get('dr',None)) if isinstance(modelatm,str) and os.path.exists(modelatm): modelfilename= modelatm elif isinstance(modelatm,str): raise ValueError('modelatm= input is a non-existing filename') else: # model atmosphere instance # Need to write this instance to a file; we will run in a temp # subdirectory of the current directory tmpDir= tempfile.mkdtemp(dir=os.getcwd()) tmpModelAtmDir= True # need to remove this later modelfilename= os.path.join(tmpDir,'modelatm.mod') modelatm.writeto(modelfilename) kwargs['modelatm']= modelfilename try: # Check whether a MOOG version of the model atmosphere exists if not os.path.exists(modelfilename.replace('.mod','.org')): # Convert to MOOG format convert_modelAtmosphere(**kwargs) # Run weedout on the linelist first if requested if run_weedout: linelistfilename= modelfilename.replace('.mod','.lines') if not os.path.exists(linelistfilename): weedout(**kwargs) kwargs['linelist']= linelistfilename # Run MOOG synth for all abundances if len(args) == 0: #special case that there are *no* differences args= ([26,0.],) nsynths= numpy.array([len(args[ii])-1 for ii in range(len(args))]) nsynth= numpy.amax(nsynths) #Take the longest abundance list nmoogwav= int((kwargs.get('wmax',_WMAX_DEFAULT)\ -kwargs.get('wmin',_WMIN_DEFAULT))\ /kwargs.get('dw',_DW_DEFAULT)+1) out= numpy.empty((nsynth,nmoogwav)) # Check whether the number of syntheses is > 5 and run multiple # MOOG instances if necessary, bc MOOG only does 5 at a time ninstances= int(numpy.ceil(nsynth/5.)) for ii in range(ninstances): newargs= () for jj in range(len(args)): tab= [args[jj][0]] if len(args[jj][5*ii+1:5*(ii+1)+1]) > 0: tab.extend(args[jj][5*ii+1:5*(ii+1)+1]) newargs= newargs+(tab,) out[5*ii:5*(ii+1)]= moogsynth(*newargs,**kwargs)[1] # We'll grab the wavelength grid from the continuum below # Now compute the continuum and multiply each c-norm spectrum with it mwav, cflux= moogsynth(doflux=True,**kwargs) except: raise finally: if tmpModelAtmDir: # need to remove this temporary directory os.remove(modelfilename) moogmodelfilename= modelfilename.replace('.mod','.org') if os.path.exists(moogmodelfilename): os.remove(moogmodelfilename) if run_weedout: os.remove(modelfilename.replace('.mod','.lines')) os.rmdir(tmpDir) out*= numpy.tile(cflux,(nsynth,1)) # Now convolve with the LSF out= aplsf.convolve(mwav,out, lsf=lsf,xlsf=xlsf,dxlsf=dxlsf,vmacro=vmacro) # Now continuum-normalize if cont.lower() == 'true': # Get the true continuum on the apStar wavelength grid apWave= apStarWavegrid() baseline= numpy.polynomial.Polynomial.fit(mwav,cflux,4) ip= interpolate.InterpolatedUnivariateSpline(mwav, cflux/baseline(mwav), k=3) cflux= baseline(apWave)*ip(apWave) # Divide it out out/= numpy.tile(cflux,(nsynth,1)) elif not cont is None: cflux= apcont.fit(out,numpy.ones_like(out),type=cont) out[cflux > 0.]/= cflux[cflux > 0.] out[cflux <= 0.]= numpy.nan return out
def synth(*args, **kwargs): """ NAME: synth PURPOSE: Generate model APOGEE spectra using MOOG: this is a general routine that generates the non-continuum-normalized spectrum, convolves with the LSF and macrotubulence, and optionally continuum normalizes the output; use 'moogsynth' for a direct interface to MOOG INPUT ARGUMENTS: lists with abundances wrt the atmosphere (they don't all have to have the same length, missing ones are filled in with zeros): [Atomic number1,diff1_1,diff1_2,diff1_3,...,diff1_N] [Atomic number2,diff2_1,diff2_2,diff2_3,...,diff2_N] ... [Atomic numberM,diffM_1,diffM_2,diffM_3,...,diffM_N] INPUT KEYWORDS: LSF: lsf= ('all') LSF to convolve with; output of apogee.spec.lsf.eval; sparsify for efficiency; if 'all' or 'combo' a pre-computed version will be downloaded from the web Either: xlsf= (None) pixel offset grid on which the LSF is computed (see apogee.spec.lsf.eval); unnecessary if lsf=='all' or 'combo' dxlsf= (None) spacing of pixel offsets vmacro= (6.) macroturbulence to apply CONTINUUM: cont= ('aspcap') continuum-normalization to apply: None: no continuum normalization 'true': Use the true continuum 'aspcap': Use the continuum normalization method of ASPCAP DR12 'cannon': Normalize using continuum pixels derived from the Cannon SYNTHESIS: linelist= (None) linelist to use; can be set to the path of a linelist file or to the name of an APOGEE linelist run_weedout= (False) if True, run MOOG weedout on the linelist first wmin, wmax, dw, width= (15000.000, 17000.000, 0.10000000, 7.0000000) spectral synthesis limits, step, and width of calculation (see MOOG) lib= ('kurucz_filled') spectral library MODEL ATMOSPHERE PARAMETERS: Specify one of the following: (a) modelatm= (None) can be set to the filename of a model atmosphere or to a model-atmosphere instance (if filename, needs to end in .mod) (b) parameters of a KURUCZ model atmosphere: (1) teff= (4500) Teff logg= (2.5) logg metals= (0.) metallicity cm= (0.) carbon-enhancement am= (0.) alpha-enhancement (2) fparam= standard ASPCAP output format lib= ('kurucz_filled') model atmosphere library dr= (None) use model atmospheres from this data release vmicro= (2.) microturbulence (only used if the MOOG-formatted atmosphere is not found) (can also be part of fparam) MISCELLANEOUS: dr= return the path corresponding to this data release OUTPUT: spectra (nspec,nwave) HISTORY: 2015-03-15 - Written - Bovy (IAS) """ run_weedout = kwargs.pop('run_weedout', False) # Check that we have the LSF and store the relevant keywords lsf = kwargs.pop('lsf', 'all') if isinstance(lsf, str): xlsf, lsf = aplsf._load_precomp(dr=kwargs.get('dr', None), fiber=lsf) dxlsf = None else: xlsf = kwargs.pop('xlsf', None) dxlsf = kwargs.pop('dxlsf', None) if xlsf is None and dxlsf is None: raise ValueError( 'xlsf= or dxlsf= input needs to be given if the LSF is given as an array' ) vmacro = kwargs.pop('vmacro', 6.) # Parse continuum-normalization keywords cont = kwargs.pop('cont', 'aspcap') # Setup the model atmosphere modelatm = kwargs.pop('modelatm', None) tmpModelAtmDir = False # Parse fparam, if present fparam = kwargs.pop('fparam', None) if not fparam is None: kwargs['teff'] = fparam[paramIndx('TEFF')] kwargs['logg'] = fparam[paramIndx('LOGG')] kwargs['metals'] = fparam[paramIndx('METALS')] kwargs['am'] = fparam[paramIndx('ALPHA')] kwargs['cm'] = fparam[paramIndx('C')] kwargs['vm'] = 10.**fparam[paramIndx('LOG10VDOP')] if modelatm is None: # Setup a model atmosphere modelatm = atlas9.Atlas9Atmosphere(teff=kwargs.get('teff', 4500.), logg=kwargs.get('logg', 2.5), metals=kwargs.get('metals', 0.), am=kwargs.get('am', 0.), cm=kwargs.get('cm', 0.), dr=kwargs.get('dr', None)) if isinstance(modelatm, str) and os.path.exists(modelatm): modelfilename = modelatm elif isinstance(modelatm, str): raise ValueError('modelatm= input is a non-existing filename') else: # model atmosphere instance # Need to write this instance to a file; we will run in a temp # subdirectory of the current directory tmpDir = tempfile.mkdtemp(dir=os.getcwd()) tmpModelAtmDir = True # need to remove this later modelfilename = os.path.join(tmpDir, 'modelatm.mod') modelatm.writeto(modelfilename) kwargs['modelatm'] = modelfilename try: # Check whether a MOOG version of the model atmosphere exists if not os.path.exists(modelfilename.replace('.mod', '.org')): # Convert to MOOG format convert_modelAtmosphere(**kwargs) # Run weedout on the linelist first if requested if run_weedout: linelistfilename = modelfilename.replace('.mod', '.lines') if not os.path.exists(linelistfilename): weedout(**kwargs) kwargs['linelist'] = linelistfilename # Run MOOG synth for all abundances if len(args) == 0: #special case that there are *no* differences args = ([26, 0.], ) nsynths = numpy.array([len(args[ii]) - 1 for ii in range(len(args))]) nsynth = numpy.amax(nsynths) #Take the longest abundance list nmoogwav= int((kwargs.get('wmax',_WMAX_DEFAULT)\ -kwargs.get('wmin',_WMIN_DEFAULT))\ /kwargs.get('dw',_DW_DEFAULT)+1) out = numpy.empty((nsynth, nmoogwav)) # Check whether the number of syntheses is > 5 and run multiple # MOOG instances if necessary, bc MOOG only does 5 at a time ninstances = int(numpy.ceil(nsynth / 5.)) for ii in range(ninstances): newargs = () for jj in range(len(args)): tab = [args[jj][0]] if len(args[jj][5 * ii + 1:5 * (ii + 1) + 1]) > 0: tab.extend(args[jj][5 * ii + 1:5 * (ii + 1) + 1]) newargs = newargs + (tab, ) out[5 * ii:5 * (ii + 1)] = moogsynth(*newargs, **kwargs)[1] # We'll grab the wavelength grid from the continuum below # Now compute the continuum and multiply each c-norm spectrum with it mwav, cflux = moogsynth(doflux=True, **kwargs) except: raise finally: if tmpModelAtmDir: # need to remove this temporary directory os.remove(modelfilename) moogmodelfilename = modelfilename.replace('.mod', '.org') if os.path.exists(moogmodelfilename): os.remove(moogmodelfilename) if run_weedout: os.remove(modelfilename.replace('.mod', '.lines')) os.rmdir(tmpDir) out *= numpy.tile(cflux, (nsynth, 1)) # Now convolve with the LSF out = aplsf.convolve(mwav, out, lsf=lsf, xlsf=xlsf, dxlsf=dxlsf, vmacro=vmacro) # Now continuum-normalize if cont.lower() == 'true': # Get the true continuum on the apStar wavelength grid apWave = apStarWavegrid() baseline = numpy.polynomial.Polynomial.fit(mwav, cflux, 4) ip = interpolate.InterpolatedUnivariateSpline(mwav, cflux / baseline(mwav), k=3) cflux = baseline(apWave) * ip(apWave) # Divide it out out /= numpy.tile(cflux, (nsynth, 1)) elif not cont is None: cflux = apcont.fit(out, numpy.ones_like(out), type=cont) out[cflux > 0.] /= cflux[cflux > 0.] out[cflux <= 0.] = numpy.nan return out
def windows(*args,**kwargs): """ NAME: windows PURPOSE: Generate model APOGEE spectra using MOOG in selected wavelength windows (but the whole APOGEE spectral range is returned): this is a general routine that generates the non-continuum-normalized spectrum, convolves with the LSF and macrotubulence, and optionally continuum normalizes the output; use 'moogsynth' for a direct interface to MOOG INPUT ARGUMENTS: Windows specification: Provide one of (1) Element string: the APOGEE windows for this element will be loaded (2) startindxs, endindxs= start and end indexes of the windows on the apStar wavelength grid (3) startlams, endlams= start and end wavelengths in \AA lists with abundance differences wrt the atmosphere (they don't all have to have the same length, missing ones are filled in with zeros): [Atomic number1,diff1_1,diff1_2,diff1_3,...,diff1_N] [Atomic number2,diff2_1,diff2_2,diff2_3,...,diff2_N] ... [Atomic numberM,diffM_1,diffM_2,diffM_3,...,diffM_N] INPUT KEYWORDS: BASELINE: you can specify the baseline spectrum to not always re-compute it baseline= baseline c-normalized spectrum on MOOG wavelength grid (obtained from moogsynth) mwav= MOOG wavelength grid (obtained from moogsynth) cflux= continuum flux from MOOG Typically, you can obtain these three keywords by doing (kwargs are the keywords you provide to this function as well) >>> baseline= moogsynth(**kwargs)[1] >>> mwav, cflux= moogsynth(doflux=True,**kwargs) LSF: lsf= ('all') LSF to convolve with; output of apogee.spec.lsf.eval; sparsify for efficiency; if 'all' or 'combo' a pre-computed version will be downloaded from the web Either: xlsf= (None) pixel offset grid on which the LSF is computed (see apogee.spec.lsf.eval); unnecessary if lsf=='all' or 'combo' dxlsf= (None) spacing of pixel offsets vmacro= (6.) macroturbulence to apply CONTINUUM: cont= ('aspcap') continuum-normalization to apply: None: no continuum normalization 'true': Use the true continuum 'aspcap': Use the continuum normalization method of ASPCAP DR12 'cannon': Normalize using continuum pixels derived from the Cannon SYNTHESIS: linelist= (None) linelist to use; if this is None, the code looks for a weed-out version of the linelist appropriate for the given model atmosphere run_weedout= (False) if True, run MOOG weedout on the linelist first wmin, wmax, dw, width= (15000.000, 17000.000, 0.10000000, 7.0000000) spectral synthesis limits *for the whole spectrum* (not just the windows), step, and width of calculation (see MOOG) MODEL ATMOSPHERE PARAMETERS: Specify one of the following: (a) modelatm= (None) can be set to the filename of a model atmosphere or to a model-atmosphere instance (if filename, needs to end in .mod) (b) parameters of a KURUCZ model atmosphere: (1) teff= (4500) Teff logg= (2.5) logg metals= (0.) metallicity cm= (0.) carbon-enhancement am= (0.) alpha-enhancement (2) fparam= standard ASPCAP output format ( lib= ('kurucz_filled') model atmosphere library dr= (None) use model atmospheres from this data release vmicro= (2.) microturbulence (only used if the MOOG-formatted atmosphere is not found) (can also be part of fparam) MISCELLANEOUS: dr= return the path corresponding to this data release OUTPUT: spectra (nspec,nwave) HISTORY: 2015-03-18 - Written - Bovy (IAS) """ # Pop some kwargs run_weedout= kwargs.pop('run_weedout',False) baseline= kwargs.pop('baseline',None) mwav= kwargs.pop('mwav',None) cflux= kwargs.pop('cflux',None) # Check that we have the LSF and store the relevant keywords lsf= kwargs.pop('lsf','all') if isinstance(lsf,str): xlsf, lsf= aplsf._load_precomp(dr=kwargs.get('dr',None),fiber=lsf) dxlsf= None else: xlsf= kwargs.pop('xlsf',None) dxlsf= kwargs.pop('dxlsf',None) if xlsf is None and dxlsf is None: raise ValueError('xlsf= or dxlsf= input needs to be given if the LSF is given as an array') vmacro= kwargs.pop('vmacro',6.) # Parse continuum-normalization keywords cont= kwargs.pop('cont','aspcap') # Parse the wavelength regions apWave= apStarWavegrid() if isinstance(args[0],str): #element string given si,ei= apwindow.waveregions(args[0],pad=3,asIndex=True) args= args[1:] else: if isinstance(args[0][0],int): # assume index si,ei= args[0], args[1] else: # assume wavelengths in \AA sl,el= args[0], args[1] # Convert to index si, ei= [], [] for s,e in zip(sl,el): # Find closest index into apWave si.append(numpy.argmin(numpy.fabs(s-apWave))) ei.append(numpy.argmin(numpy.fabs(e-apWave))) args= args[2:] # Setup the model atmosphere modelatm= kwargs.pop('modelatm',None) tmpModelAtmDir= False # Parse fparam, if present fparam= kwargs.pop('fparam',None) if not fparam is None: kwargs['teff']= fparam[0,paramIndx('TEFF')] kwargs['logg']= fparam[0,paramIndx('LOGG')] kwargs['metals']= fparam[0,paramIndx('METALS')] kwargs['am']= fparam[0,paramIndx('ALPHA')] kwargs['cm']= fparam[0,paramIndx('C')] kwargs['vm']= 10.**fparam[0,paramIndx('LOG10VDOP')] if modelatm is None: # Setup a model atmosphere modelatm= atlas9.Atlas9Atmosphere(teff=kwargs.get('teff',4500.), logg=kwargs.get('logg',2.5), metals=kwargs.get('metals',0.), am=kwargs.get('am',0.), cm=kwargs.get('cm',0.), dr=kwargs.get('dr',None)) if isinstance(modelatm,str) and os.path.exists(modelatm): modelfilename= modelatm elif isinstance(modelatm,str): raise ValueError('modelatm= input is a non-existing filename') else: # model atmosphere instance # Need to write this instance to a file; we will run in a temp # subdirectory of the current directory tmpDir= tempfile.mkdtemp(dir=os.getcwd()) tmpModelAtmDir= True # need to remove this later modelfilename= os.path.join(tmpDir,'modelatm.mod') modelatm.writeto(modelfilename) kwargs['modelatm']= modelfilename try: # Check whether a MOOG version of the model atmosphere exists if not os.path.exists(modelfilename.replace('.mod','.org')): # Convert to MOOG format convert_modelAtmosphere(**kwargs) # Run weedout on the linelist first if requested if run_weedout: linelistfilename= modelfilename.replace('.mod','.lines') if not os.path.exists(linelistfilename): weedout(**kwargs) kwargs['linelist']= linelistfilename # Run MOOG synth for the whole wavelength range as a baseline, also contin if baseline is None: baseline= moogsynth(**kwargs)[1] elif isinstance(baseline,tuple): #probably accidentally gave wav as well baseline= baseline[1] if mwav is None or cflux is None: mwav, cflux= moogsynth(doflux=True,**kwargs) # Convert the apStarWavegrid windows to moogWavegrid regions sm,em= [], [] for start,end in zip(si,ei): sm.append(numpy.argmin(numpy.fabs(apWave[start]-mwav))) em.append(numpy.argmin(numpy.fabs(apWave[end]-mwav))) # Run MOOG synth for all abundances and all windows if len(args) == 0: #special case that there are *no* differences args= ([26,0.],) nsynths= numpy.array([len(args[ii])-1 for ii in range(len(args))]) nsynth= numpy.amax(nsynths) #Take the longest abundance list out= numpy.tile(baseline,(nsynth,1)) # Run all windows for start, end in zip(sm,em): kwargs['wmin']= mwav[start] kwargs['wmax']= mwav[end] # Check whether the number of syntheses is > 5 and run multiple # MOOG instances if necessary, bc MOOG only does 5 at a time ninstances= int(numpy.ceil(nsynth/5.)) for ii in range(ninstances): newargs= () for jj in range(len(args)): tab= [args[jj][0]] if len(args[jj][5*ii+1:5*(ii+1)+1]) > 0: tab.extend(args[jj][5*ii+1:5*(ii+1)+1]) newargs= newargs+(tab,) out[5*ii:5*(ii+1),start:end+1]= moogsynth(*newargs,**kwargs)[1] except: raise finally: if tmpModelAtmDir: # need to remove this temporary directory os.remove(modelfilename) moogmodelfilename= modelfilename.replace('.mod','.org') if os.path.exists(moogmodelfilename): os.remove(moogmodelfilename) if run_weedout: os.remove(modelfilename.replace('.mod','.lines')) os.rmdir(tmpDir) # Now multiply each continuum-normalized spectrum with the continuum out*= numpy.tile(cflux,(nsynth,1)) # Now convolve with the LSF out= aplsf.convolve(mwav,out, lsf=lsf,xlsf=xlsf,dxlsf=dxlsf,vmacro=vmacro) # Now continuum-normalize if cont.lower() == 'true': # Get the true continuum on the apStar wavelength grid apWave= apStarWavegrid() baseline= numpy.polynomial.Polynomial.fit(mwav,cflux,4) ip= interpolate.InterpolatedUnivariateSpline(mwav, cflux/baseline(mwav), k=3) cflux= baseline(apWave)*ip(apWave) # Divide it out out/= numpy.tile(cflux,(nsynth,1)) elif not cont is None: cflux= apcont.fit(out,numpy.ones_like(out),type=cont) out[cflux > 0.]/= cflux[cflux > 0.] out[cflux <= 0.]= numpy.nan return out
def synth(*args,**kwargs): """ NAME: synth PURPOSE: Generate model APOGEE spectra using Turbospectrum: this is a general routine that generates the non-continuum-normalized spectrum, convolves with the LSF and macrotubulence, and optionally continuum normalizes the output; use 'turbosynth' for a direct interface to Turbospectrum INPUT ARGUMENTS: lists with abundances differences wrt the atmosphere (they don't all have to have the same length, missing ones are filled in with zeros): [Atomic number1,diff1_1,diff1_2,diff1_3,...,diff1_N] [Atomic number2,diff2_1,diff2_2,diff2_3,...,diff2_N] ... [Atomic numberM,diffM_1,diffM_2,diffM_3,...,diffM_N] INPUT KEYWORDS: LSF: lsf= ('all') LSF to convolve with; output of apogee.spec.lsf.eval; sparsify for efficiency; if 'all' or 'combo' a pre-computed version will be downloaded from the web Either: xlsf= (None) pixel offset grid on which the LSF is computed (see apogee.spec.lsf.eval); unnecessary if lsf=='all' or 'combo' dxlsf= (None) spacing of pixel offsets vmacro= (6.) macroturbulence to apply CONTINUUM: cont= ('aspcap') continuum-normalization to apply: None: no continuum normalization 'true': Use the true continuum 'aspcap': Use the continuum normalization method of ASPCAP DR12 'cannon': Normalize using continuum pixels derived from the Cannon SYNTHESIS: air= (True) if True, perform the synthesis in air wavelengths (output is still in vacuum); set to False at your own risk, as Turbospectrum expects the linelist in air wavelengths!) Hlinelist= (None) Hydrogen linelists to use; can be set to the path of a linelist file or to the name of an APOGEE linelist; if None, then we first search for the Hlinedata.vac in the APOGEE linelist directory (if air=False) or we use the internal Turbospectrum Hlinelist (if air=True) linelist= (None) molecular and atomic linelists to use; can be set to the path of a linelist file or to the name of an APOGEE linelist, or lists of such files; if a single filename is given, the code will first search for files with extensions '.atoms', '.molec' or that start with 'turboatoms.' and 'turbomolec.' wmin, wmax, dw= (15000.000, 17000.000, 0.10000000) spectral synthesis limits and step costheta= (1.) cosine of the viewing angle lib= ('kurucz_filled') spectral library MODEL ATMOSPHERE PARAMETERS: Specify one of the following: (a) modelatm= (None) model-atmosphere instance (b) parameters of a KURUCZ model atmosphere: (1) teff= (4500) Teff logg= (2.5) logg metals= (0.) metallicity cm= (0.) carbon-enhancement am= (0.) alpha-enhancement (2) fparam= standard ASPCAP output format lib= ('kurucz_filled') model atmosphere library vmicro= (2.) microturbulence (only used if the MOOG-formatted atmosphere is not found) (can also be part of fparam) MISCELLANEOUS: dr= return the path corresponding to this data release OUTPUT: spectra (nspec,nwave) HISTORY: 2015-04-16 - Written - Bovy (IAS) """ # Check that we have the LSF and store the relevant keywords lsf= kwargs.pop('lsf','all') if isinstance(lsf,str): xlsf, lsf= aplsf._load_precomp(dr=kwargs.get('dr',None),fiber=lsf) dxlsf= None else: xlsf= kwargs.pop('xlsf',None) dxlsf= kwargs.pop('dxlsf',None) if xlsf is None and dxlsf is None: raise ValueError('xlsf= or dxlsf= input needs to be given if the LSF is given as an array') vmacro= kwargs.pop('vmacro',6.) # Parse continuum-normalization keywords cont= kwargs.pop('cont','aspcap') # Setup the model atmosphere modelatm= kwargs.pop('modelatm',None) # Parse fparam, if present fparam= kwargs.pop('fparam',None) if not fparam is None: kwargs['teff']= fparam[paramIndx('TEFF')] kwargs['logg']= fparam[paramIndx('LOGG')] kwargs['metals']= fparam[paramIndx('METALS')] kwargs['am']= fparam[paramIndx('ALPHA')] kwargs['cm']= fparam[paramIndx('C')] kwargs['vmicro']= 10.**fparam[paramIndx('LOG10VDOP')] # Need to pass a model atmosphere instance to turbosynth (needs to be made # more efficient, because now turbosynth always write the atmosphere if modelatm is None: # Setup a model atmosphere modelatm= atlas9.Atlas9Atmosphere(teff=kwargs.get('teff',4500.), logg=kwargs.get('logg',2.5), metals=kwargs.get('metals',0.), am=kwargs.get('am',0.), cm=kwargs.get('cm',0.), dr=kwargs.get('dr',None)) if isinstance(modelatm,str) and os.path.exists(modelatm): raise ValueError('modelatm= input is an existing filename, but you need to give an Atmosphere object instead') elif isinstance(modelatm,str): raise ValueError('modelatm= input needs to be an Atmosphere instance') # Check temperature if modelatm._teff > 7000.: warnings.warn('Turbospectrum does not include all necessary physics to model stars hotter than about 7000 K; proceed with caution',RuntimeWarning) kwargs['modelatm']= modelatm try: # Run turbosynth for all abundances if len(args) == 0: #special case that there are *no* differences args= ([26,0.],) nsynths= numpy.array([len(args[ii])-1 for ii in range(len(args))]) nsynth= numpy.amax(nsynths) #Take the longest abundance list nturbowav= int((kwargs.get('wmax',_WMAX_DEFAULT)\ -kwargs.get('wmin',_WMIN_DEFAULT))\ /kwargs.get('dw',_DW_DEFAULT)+1) out= numpy.empty((nsynth,nturbowav)) for ii in range(nsynth): newargs= () for jj in range(len(args)): tab= [args[jj][0]] if len(args[jj]) > ii+1: tab.append(args[jj][ii+1]) newargs= newargs+(tab,) tmpOut= turbosynth(*newargs,**kwargs) out[ii]= tmpOut[2] # incl. continuum # wavelength grid from final one mwav= tmpOut[0] except: raise # If the synthesis was done in air, convert wavelength array if kwargs.get('air',True): mwav= numpy.array([air2vac(w) for w in list(mwav)]) # Now convolve with the LSF out= aplsf.convolve(mwav,out, lsf=lsf,xlsf=xlsf,dxlsf=dxlsf,vmacro=vmacro) # Now continuum-normalize if cont.lower() == 'true': # Get the true continuum on the apStar wavelength grid apWave= apStarWavegrid() baseline= numpy.polynomial.Polynomial.fit(mwav,tmpOut[2]/tmpOut[1],4) ip= interpolate.InterpolatedUnivariateSpline(mwav, tmpOut[2]/tmpOut[1]\ /baseline(mwav), k=3) cflux= baseline(apWave)*ip(apWave) # Divide it out out/= numpy.tile(cflux,(nsynth,1)) elif not cont is None: cflux= apcont.fit(out,numpy.ones_like(out),type=cont) out[cflux > 0.]/= cflux[cflux > 0.] out[cflux <= 0.]= numpy.nan return out
def windows(*args, **kwargs): """ NAME: windows PURPOSE: Generate model APOGEE spectra using MOOG in selected wavelength windows (but the whole APOGEE spectral range is returned): this is a general routine that generates the non-continuum-normalized spectrum, convolves with the LSF and macrotubulence, and optionally continuum normalizes the output; use 'moogsynth' for a direct interface to MOOG INPUT ARGUMENTS: Windows specification: Provide one of (1) Element string: the APOGEE windows for this element will be loaded (2) startindxs, endindxs= start and end indexes of the windows on the apStar wavelength grid (3) startlams, endlams= start and end wavelengths in \AA lists with abundance differences wrt the atmosphere (they don't all have to have the same length, missing ones are filled in with zeros): [Atomic number1,diff1_1,diff1_2,diff1_3,...,diff1_N] [Atomic number2,diff2_1,diff2_2,diff2_3,...,diff2_N] ... [Atomic numberM,diffM_1,diffM_2,diffM_3,...,diffM_N] INPUT KEYWORDS: BASELINE: you can specify the baseline spectrum to not always re-compute it baseline= baseline c-normalized spectrum on MOOG wavelength grid (obtained from moogsynth) mwav= MOOG wavelength grid (obtained from moogsynth) cflux= continuum flux from MOOG Typically, you can obtain these three keywords by doing (kwargs are the keywords you provide to this function as well) >>> baseline= moogsynth(**kwargs)[1] >>> mwav, cflux= moogsynth(doflux=True,**kwargs) LSF: lsf= ('all') LSF to convolve with; output of apogee.spec.lsf.eval; sparsify for efficiency; if 'all' or 'combo' a pre-computed version will be downloaded from the web Either: xlsf= (None) pixel offset grid on which the LSF is computed (see apogee.spec.lsf.eval); unnecessary if lsf=='all' or 'combo' dxlsf= (None) spacing of pixel offsets vmacro= (6.) macroturbulence to apply CONTINUUM: cont= ('aspcap') continuum-normalization to apply: None: no continuum normalization 'true': Use the true continuum 'aspcap': Use the continuum normalization method of ASPCAP DR12 'cannon': Normalize using continuum pixels derived from the Cannon SYNTHESIS: linelist= (None) linelist to use; if this is None, the code looks for a weed-out version of the linelist appropriate for the given model atmosphere run_weedout= (False) if True, run MOOG weedout on the linelist first wmin, wmax, dw, width= (15000.000, 17000.000, 0.10000000, 7.0000000) spectral synthesis limits *for the whole spectrum* (not just the windows), step, and width of calculation (see MOOG) MODEL ATMOSPHERE PARAMETERS: Specify one of the following: (a) modelatm= (None) can be set to the filename of a model atmosphere or to a model-atmosphere instance (if filename, needs to end in .mod) (b) parameters of a KURUCZ model atmosphere: (1) teff= (4500) Teff logg= (2.5) logg metals= (0.) metallicity cm= (0.) carbon-enhancement am= (0.) alpha-enhancement (2) fparam= standard ASPCAP output format ( lib= ('kurucz_filled') model atmosphere library dr= (None) use model atmospheres from this data release vmicro= (2.) microturbulence (only used if the MOOG-formatted atmosphere is not found) (can also be part of fparam) MISCELLANEOUS: dr= return the path corresponding to this data release OUTPUT: spectra (nspec,nwave) HISTORY: 2015-03-18 - Written - Bovy (IAS) """ # Pop some kwargs run_weedout = kwargs.pop('run_weedout', False) baseline = kwargs.pop('baseline', None) mwav = kwargs.pop('mwav', None) cflux = kwargs.pop('cflux', None) # Check that we have the LSF and store the relevant keywords lsf = kwargs.pop('lsf', 'all') if isinstance(lsf, str): xlsf, lsf = aplsf._load_precomp(dr=kwargs.get('dr', None), fiber=lsf) dxlsf = None else: xlsf = kwargs.pop('xlsf', None) dxlsf = kwargs.pop('dxlsf', None) if xlsf is None and dxlsf is None: raise ValueError( 'xlsf= or dxlsf= input needs to be given if the LSF is given as an array' ) vmacro = kwargs.pop('vmacro', 6.) # Parse continuum-normalization keywords cont = kwargs.pop('cont', 'aspcap') # Parse the wavelength regions apWave = apStarWavegrid() if isinstance(args[0], str): #element string given si, ei = apwindow.waveregions(args[0], pad=3, asIndex=True) args = args[1:] else: if isinstance(args[0][0], int): # assume index si, ei = args[0], args[1] else: # assume wavelengths in \AA sl, el = args[0], args[1] # Convert to index si, ei = [], [] for s, e in zip(sl, el): # Find closest index into apWave si.append(numpy.argmin(numpy.fabs(s - apWave))) ei.append(numpy.argmin(numpy.fabs(e - apWave))) args = args[2:] # Setup the model atmosphere modelatm = kwargs.pop('modelatm', None) tmpModelAtmDir = False # Parse fparam, if present fparam = kwargs.pop('fparam', None) if not fparam is None: kwargs['teff'] = fparam[0, paramIndx('TEFF')] kwargs['logg'] = fparam[0, paramIndx('LOGG')] kwargs['metals'] = fparam[0, paramIndx('METALS')] kwargs['am'] = fparam[0, paramIndx('ALPHA')] kwargs['cm'] = fparam[0, paramIndx('C')] kwargs['vm'] = 10.**fparam[0, paramIndx('LOG10VDOP')] if modelatm is None: # Setup a model atmosphere modelatm = atlas9.Atlas9Atmosphere(teff=kwargs.get('teff', 4500.), logg=kwargs.get('logg', 2.5), metals=kwargs.get('metals', 0.), am=kwargs.get('am', 0.), cm=kwargs.get('cm', 0.), dr=kwargs.get('dr', None)) if isinstance(modelatm, str) and os.path.exists(modelatm): modelfilename = modelatm elif isinstance(modelatm, str): raise ValueError('modelatm= input is a non-existing filename') else: # model atmosphere instance # Need to write this instance to a file; we will run in a temp # subdirectory of the current directory tmpDir = tempfile.mkdtemp(dir=os.getcwd()) tmpModelAtmDir = True # need to remove this later modelfilename = os.path.join(tmpDir, 'modelatm.mod') modelatm.writeto(modelfilename) kwargs['modelatm'] = modelfilename try: # Check whether a MOOG version of the model atmosphere exists if not os.path.exists(modelfilename.replace('.mod', '.org')): # Convert to MOOG format convert_modelAtmosphere(**kwargs) # Run weedout on the linelist first if requested if run_weedout: linelistfilename = modelfilename.replace('.mod', '.lines') if not os.path.exists(linelistfilename): weedout(**kwargs) kwargs['linelist'] = linelistfilename # Run MOOG synth for the whole wavelength range as a baseline, also contin if baseline is None: baseline = moogsynth(**kwargs)[1] elif isinstance(baseline, tuple): #probably accidentally gave wav as well baseline = baseline[1] if mwav is None or cflux is None: mwav, cflux = moogsynth(doflux=True, **kwargs) # Convert the apStarWavegrid windows to moogWavegrid regions sm, em = [], [] for start, end in zip(si, ei): sm.append(numpy.argmin(numpy.fabs(apWave[start] - mwav))) em.append(numpy.argmin(numpy.fabs(apWave[end] - mwav))) # Run MOOG synth for all abundances and all windows if len(args) == 0: #special case that there are *no* differences args = ([26, 0.], ) nsynths = numpy.array([len(args[ii]) - 1 for ii in range(len(args))]) nsynth = numpy.amax(nsynths) #Take the longest abundance list out = numpy.tile(baseline, (nsynth, 1)) # Run all windows for start, end in zip(sm, em): kwargs['wmin'] = mwav[start] kwargs['wmax'] = mwav[end] # Check whether the number of syntheses is > 5 and run multiple # MOOG instances if necessary, bc MOOG only does 5 at a time ninstances = int(numpy.ceil(nsynth / 5.)) for ii in range(ninstances): newargs = () for jj in range(len(args)): tab = [args[jj][0]] if len(args[jj][5 * ii + 1:5 * (ii + 1) + 1]) > 0: tab.extend(args[jj][5 * ii + 1:5 * (ii + 1) + 1]) newargs = newargs + (tab, ) out[5 * ii:5 * (ii + 1), start:end + 1] = moogsynth(*newargs, **kwargs)[1] except: raise finally: if tmpModelAtmDir: # need to remove this temporary directory os.remove(modelfilename) moogmodelfilename = modelfilename.replace('.mod', '.org') if os.path.exists(moogmodelfilename): os.remove(moogmodelfilename) if run_weedout: os.remove(modelfilename.replace('.mod', '.lines')) os.rmdir(tmpDir) # Now multiply each continuum-normalized spectrum with the continuum out *= numpy.tile(cflux, (nsynth, 1)) # Now convolve with the LSF out = aplsf.convolve(mwav, out, lsf=lsf, xlsf=xlsf, dxlsf=dxlsf, vmacro=vmacro) # Now continuum-normalize if cont.lower() == 'true': # Get the true continuum on the apStar wavelength grid apWave = apStarWavegrid() baseline = numpy.polynomial.Polynomial.fit(mwav, cflux, 4) ip = interpolate.InterpolatedUnivariateSpline(mwav, cflux / baseline(mwav), k=3) cflux = baseline(apWave) * ip(apWave) # Divide it out out /= numpy.tile(cflux, (nsynth, 1)) elif not cont is None: cflux = apcont.fit(out, numpy.ones_like(out), type=cont) out[cflux > 0.] /= cflux[cflux > 0.] out[cflux <= 0.] = numpy.nan return out
def runTarget(gridParam): locationID = gridParam.locationID apogeeID = gridParam.apogeeID badheader, header = apread.apStar(locationID, apogeeID, ext=0, header=True, dr='13') specs = apread.apStar(locationID, apogeeID, ext=1, header=False, dr='13') specerrs = apread.apStar(locationID, apogeeID, ext=2, header=False, dr='13') nvisits = header['NVISITS'] gridParamVists = [] for visit in range(1, nvisits + 1): print('Visit ' + str(visit) + '/' + str(nvisits)) if nvisits is 1: spec = specs specerr = specerrs else: spec = specs[1 + nvisits] specerr = specerrs[ 1+ nvisits] aspec= np.reshape(spec,(1, len(spec))) aspecerr= np.reshape(specerr,(1, len(specerr))) cont= spec / continuum.fit(aspec, aspecerr, type='aspcap')[0] conterr = specerr / continuum.fit(aspec, aspecerr, type='aspcap')[0] gridParam = GridParam(locationID, apogeeID) gridParam.constructParams() gridParam.spec = bm.shiftFlux(cont, header['VHELIO' + str(visit)]) gridParam.specErr = bm.shiftFlux(conterr, header['VHELIO' + str(visit)]) gridParam.getRVs(visit) gridParam.visit = visit nSteps = 200 sampler = MCMC(gridParam, nSteps=nSteps) circular_samples = sampler.chain[:, :, :].reshape((-1, 5)) results = np.asarray(list(map(lambda v: (v[1], v[2]-v[1], v[1]-v[0]), zip(*np.percentile(circular_samples, [16, 50, 84], axis=0))))) fig, ax = plt.subplots(5, 1, sharex='col') for i in range(5): for j in range(len(sampler.chain[:, 0, i])): ax[i].plot(np.linspace(0, nSteps, num=nSteps), sampler.chain[j, :, i], 'k', alpha=0.2) ax[i].plot(np.linspace(0, nSteps, num=nSteps) , np.ones(nSteps)*results[i][0], 'b', lw=2) fig.set_figheight(20) fig.set_figwidth(15) if not os.path.exists('plots/walker/' + str(locationID) + '/' + str(apogeeID) + '/'): os.makedirs('plots/walker/' + str(locationID) + '/' + str(apogeeID) + '/') plt.savefig('plots/walker/' + str(locationID) + '/' + str(apogeeID) + '/' + str(visit) + '.png') plt.close('all') gridParam.modelParamA.teff = results[0][0] gridParam.modelParamB.teff = results[1][0] gridParam.modelParamB.fluxRatio = results[2][0] gridParam.modelParamA.rv = results[3][0] gridParam.modelParamB.rv = results[4][0] gridParam.chi2 = -1.0 * fitModel(None, gridParam, plot=True) gridParamVists.append(gridParam) if not os.path.exists('lists/chi2/' + str(locationID) + '/'): os.makedirs('lists/chi2/' + str(locationID) + '/') filename = 'lists/chi2/' + str(locationID) + '/' + str(apogeeID) + '.tbl' writeGridToFile(gridParamVists, filename=filename)
def windows(*args,**kwargs): """ NAME: windows PURPOSE: Generate model APOGEE spectra using Turbospectrum in selected wavelength windows (but the whole APOGEE spectral range is returned): this is a general routine that generates the non-continuum-normalized spectrum, convolves with the LSF and macrotubulence, and optionally continuum normalizes the output; use 'turbosynth' for a direct interface to Turbospectrum INPUT ARGUMENTS: Windows specification: Provide one of (1) Element string: the APOGEE windows for this element will be loaded (2) startindxs, endindxs= start and end indexes of the windows on the apStar wavelength grid (3) startlams, endlams= start and end wavelengths in \AA lists with abundance differences wrt the atmosphere (they don't all have to have the same length, missing ones are filled in with zeros): [Atomic number1,diff1_1,diff1_2,diff1_3,...,diff1_N] [Atomic number2,diff2_1,diff2_2,diff2_3,...,diff2_N] ... [Atomic numberM,diffM_1,diffM_2,diffM_3,...,diffM_N] INPUT KEYWORDS: BASELINE: you can specify the baseline spectrum and the continuous opacity to not always re-compute it baseline= baseline c-normalized spectrum on Turbospectrum wavelength grid (obtained from turbosynth) mwav= Turbospectrum wavelength grid (obtained from turbosynth) cflux= continuum flux from Turbospectrum modelopac= (None) (a) if set to an existing filename: assume babsma_lu has already been run and use this continuous opacity in bsyn_lu (b) if set to a non-existing filename: store the continuous opacity in this file Typically, you can obtain these three keywords by doing (kwargs are the keywords you provide to this function as well, and includes modelopac='SOME FILENAME') >>> baseline= turbosynth(**kwargs) >>> mwav= baseline[0] >>> cflux= baseline[2]/baseline[1] >>> baseline= baseline[1] LSF: lsf= ('all') LSF to convolve with; output of apogee.spec.lsf.eval; sparsify for efficiency; if 'all' or 'combo' a pre-computed version will be downloaded from the web Either: xlsf= (None) pixel offset grid on which the LSF is computed (see apogee.spec.lsf.eval); unnecessary if lsf=='all' or 'combo' dxlsf= (None) spacing of pixel offsets vmacro= (6.) macroturbulence to apply CONTINUUM: cont= ('aspcap') continuum-normalization to apply: None: no continuum normalization 'true': Use the true continuum 'aspcap': Use the continuum normalization method of ASPCAP DR12 'cannon': Normalize using continuum pixels derived from the Cannon SYNTHESIS: air= (True) if True, perform the synthesis in air wavelengths (output is still in vacuum); set to False at your own risk, as Turbospectrum expects the linelist in air wavelengths!) Hlinelist= (None) Hydrogen linelists to use; can be set to the path of a linelist file or to the name of an APOGEE linelist; if None, then we first search for the Hlinedata.vac in the APOGEE linelist directory (if air=False) or we use the internal Turbospectrum Hlinelist (if air=True) linelist= (None) molecular and atomic linelists to use; can be set to the path of a linelist file or to the name of an APOGEE linelist, or lists of such files; if a single filename is given, the code will first search for files with extensions '.atoms', '.molec' or that start with 'turboatoms.' and 'turbomolec.' wmin, wmax, dw= (15000.000, 17000.000, 0.10000000, 7.0000000) spectral synthesis limits, step, and width of calculation (see MOOG) costheta= (1.) cosine of the viewing angle MODEL ATMOSPHERE PARAMETERS: Specify one of the following: (a) modelatm= (None) model-atmosphere instance (b) parameters of a KURUCZ model atmosphere: (1) teff= (4500) Teff logg= (2.5) logg metals= (0.) metallicity cm= (0.) carbon-enhancement am= (0.) alpha-enhancement (2) fparam= standard ASPCAP output format lib= ('kurucz_filled') model atmosphere library vmicro= (2.) microturbulence (only used if the MOOG-formatted atmosphere is not found) (can also be part of fparam) MISCELLANEOUS: dr= return the path corresponding to this data release raw= (False) if True, return the raw turbosynth output OUTPUT: spectra (nspec,nwave) (wavelengths,cont-norm. spectrum, spectrum (nwave)) if raw == True HISTORY: 2015-04-17 - Written - Bovy (IAS) """ # Pop some kwargs baseline= kwargs.pop('baseline',None) mwav= kwargs.pop('mwav',None) cflux= kwargs.pop('cflux',None) raw= kwargs.pop('raw',False) # Check that we have the LSF and store the relevant keywords lsf= kwargs.pop('lsf','all') if isinstance(lsf,str): xlsf, lsf= aplsf._load_precomp(dr=kwargs.get('dr',None),fiber=lsf) dxlsf= None else: xlsf= kwargs.pop('xlsf',None) dxlsf= kwargs.pop('dxlsf',None) if xlsf is None and dxlsf is None: raise ValueError('xlsf= or dxlsf= input needs to be given if the LSF is given as an array') vmacro= kwargs.pop('vmacro',6.) # Parse continuum-normalization keywords cont= kwargs.pop('cont','aspcap') # Parse the wavelength regions apWave= apStarWavegrid() if isinstance(args[0],str): #element string given si,ei= apwindow.waveregions(args[0],pad=3,asIndex=True) args= args[1:] else: if isinstance(args[0][0],int): # assume index si,ei= args[0], args[1] else: # assume wavelengths in \AA sl,el= args[0], args[1] # Convert to index si, ei= [], [] for s,e in zip(sl,el): # Find closest index into apWave si.append(numpy.argmin(numpy.fabs(s-apWave))) ei.append(numpy.argmin(numpy.fabs(e-apWave))) args= args[2:] # Setup the model atmosphere modelatm= kwargs.pop('modelatm',None) # Parse fparam, if present fparam= kwargs.pop('fparam',None) if not fparam is None: kwargs['teff']= fparam[0,paramIndx('TEFF')] kwargs['logg']= fparam[0,paramIndx('LOGG')] kwargs['metals']= fparam[0,paramIndx('METALS')] kwargs['am']= fparam[0,paramIndx('ALPHA')] kwargs['cm']= fparam[0,paramIndx('C')] kwargs['vmicro']= 10.**fparam[0,paramIndx('LOG10VDOP')] # Need to pass a model atmosphere instance to turbosynth (needs to be made # more efficient, because now turbosynth always write the atmosphere if modelatm is None: # Setup a model atmosphere modelatm= atlas9.Atlas9Atmosphere(teff=kwargs.get('teff',4500.), logg=kwargs.get('logg',2.5), metals=kwargs.get('metals',0.), am=kwargs.get('am',0.), cm=kwargs.get('cm',0.), dr=kwargs.get('dr',None)) if isinstance(modelatm,str) and os.path.exists(modelatm): raise ValueError('modelatm= input is an existing filename, but you need to give an Atmosphere object instead') elif isinstance(modelatm,str): raise ValueError('modelatm= input needs to be an Atmosphere instance') # Check temperature if modelatm._teff > 7000.: warnings.warn('Turbospectrum does not include all necessary physics to model stars hotter than about 7000 K; proceed with caution',RuntimeWarning) kwargs['modelatm']= modelatm try: rmModelopac= False if not 'modelopac' in kwargs: rmModelopac= True kwargs['modelopac']= tempfile.mktemp('mopac') # Make sure opacity is first calculated over the full wav. range kwargs['babsma_wmin']= 15000. kwargs['babsma_wmax']= 17000. elif 'modelopac' in kwargs and not isinstance(kwargs['modelopac'],str): raise ValueError('modelopac needs to be set to a filename') # Run synth for the whole wavelength range as a baseline if baseline is None or mwav is None or cflux is None: baseline= turbosynth(**kwargs) mwav= baseline[0] cflux= baseline[2]/baseline[1] baseline= baseline[1] elif isinstance(baseline,tuple): #probably accidentally gave the entire output of turbosynth mwav= baseline[0] cflux= baseline[2]/baseline[1] baseline= baseline[1] # Convert the apStarWavegrid windows to turboWavegrid regions sm,em= [], [] for start,end in zip(si,ei): if kwargs.get('air',True): sm.append(numpy.argmin(numpy.fabs(vac2air(apWave[start])-mwav))) em.append(numpy.argmin(numpy.fabs(vac2air(apWave[end])-mwav))) else: sm.append(numpy.argmin(numpy.fabs(apWave[start]-mwav))) em.append(numpy.argmin(numpy.fabs(apWave[end]-mwav))) # Run Turbospectrum synth for all abundances and all windows if len(args) == 0: #special case that there are *no* differences args= ([26,0.],) nsynths= numpy.array([len(args[ii])-1 for ii in range(len(args))]) nsynth= numpy.amax(nsynths) #Take the longest abundance list out= numpy.tile(baseline,(nsynth,1)) # Run all windows for start, end in zip(sm,em): kwargs['wmin']= mwav[start] kwargs['wmax']= mwav[end]+0.001 for ii in range(nsynth): newargs= () for jj in range(len(args)): tab= [args[jj][0]] if len(args[jj]) > ii+1: tab.append(args[jj][ii+1]) newargs= newargs+(tab,) tmpOut= turbosynth(*newargs,**kwargs) if numpy.isnan(tmpOut[1][-1]): # NaN returned for reasons that I don't understand out[ii,start:end]= tmpOut[1][:-1] else: out[ii,start:end+1]= tmpOut[1] except: raise finally: if rmModelopac and os.path.exists(kwargs['modelopac']): os.remove(kwargs['modelopac']) kwargs.pop('modelopac') # Now multiply each continuum-normalized spectrum with the continuum out*= numpy.tile(cflux,(nsynth,1)) if raw: return (mwav,out/numpy.tile(cflux,(nsynth,1)),out) # If the synthesis was done in air, convert wavelength array if kwargs.get('air',True): mwav= numpy.array([air2vac(w) for w in list(mwav)]) # Now convolve with the LSF out= aplsf.convolve(mwav,out, lsf=lsf,xlsf=xlsf,dxlsf=dxlsf,vmacro=vmacro) # Now continuum-normalize if cont.lower() == 'true': # Get the true continuum on the apStar wavelength grid apWave= apStarWavegrid() baseline= numpy.polynomial.Polynomial.fit(mwav,cflux,4) ip= interpolate.InterpolatedUnivariateSpline(mwav, cflux/baseline(mwav), k=3) cflux= baseline(apWave)*ip(apWave) # Divide it out out/= numpy.tile(cflux,(nsynth,1)) elif not cont is None: cflux= apcont.fit(out,numpy.ones_like(out),type=cont) out[cflux > 0.]/= cflux[cflux > 0.] out[cflux <= 0.]= numpy.nan return out
def targetGrid(gridParam, minimizedVisitParams, plot=True): ''' The grid tests against ranging effective temperatures for both stars and the flux ratio of the secondary component. This is done by target. :param gridParam: [in/out] The GridParam of the target :param gridRes: [out] The visits that have the same paramters as the minimized chi2 visit :param plot: [in] If true makes plots to see intermediate steps (default=True) ''' locationID = gridParam.locationID apogeeID = gridParam.apogeeID badheader, header = apread.apStar(locationID, apogeeID, ext=0, header=True) specs = apread.apStar(locationID, apogeeID, ext=1, header=False) specerrs = apread.apStar(locationID, apogeeID, ext=2, header=False) nvisits = header['NVISITS'] # chi2 = np.full((nvisits, nrangeTeffA, nrangeTeffB, nrangeFluxRatio), -1.) #chi2 = np.full((nvisits, nrangeTeffA, nrangeTeffB, nrangeFluxRatio, nrangeRVA, nrangeRVB), -1.) ipg = ferre.Interpolator(lib='GK') ipf = ferre.Interpolator(lib='F') # Create file to store all the chi2 values path = 'lists/all_chi2/' + str(locationID) + '/' if not os.path.exists(path): os.makedirs(path) fn = open(path + apogeeID + '.lis', 'w') fn.write(gridParam.toStringHeader()) timer = Timer() timeSum = 0.0 allChi2 = [] visitGridParamsBuffer = [] for visit in range(1, nvisits + 1): timer.start() if (nvisits != 1): spec = specs[1+visit] specerr = specerrs[1+visit] else: spec = specs specerr = specerrs if (len(minimizedVisitParams) == 0): gridParam = GridParam(locationID, apogeeID) gridParam.constructParams() gridParam.getRVs(visit) else: gridParam = minimizedVisitParams[visit - 1] visitGridParamsBuffer.append(gridParam) # Prepare grid ranges rangeTeffA = np.arange(gridParam.minTeffA, gridParam.maxTeffA, gridParam.teffStepA) rangeTeffB = np.arange(gridParam.minTeffB, gridParam.maxTeffB, gridParam.teffStepB) rangeFluxRatio = np.arange(gridParam.minFluxRatio, gridParam.maxFluxRatio, gridParam.fluxStep) rangeRVA = np.arange(gridParam.minRVA, gridParam.maxRVA, gridParam.rvAStep) rangeRVB = np.arange(gridParam.minRVB, gridParam.maxRVB, gridParam.rvBStep) nrangeTeffA = len(rangeTeffA) nrangeTeffB = len(rangeTeffB) nrangeFluxRatio = len(rangeFluxRatio) nrangeRVA =len(rangeRVA) nrangeRVB =len(rangeRVB) chi2 = np.full((nrangeTeffA, nrangeTeffB, nrangeFluxRatio, nrangeRVA, nrangeRVB), -1.) print('Visit: ' + str(visit) ,'Grid dimensions: ' + str(chi2.shape)) # Prep Spectra aspec= np.reshape(spec,(1, len(spec))) aspecerr= np.reshape(specerr,(1, len(specerr))) cont= spec / continuum.fit(aspec, aspecerr, type='aspcap')[0] conterr = specerr / continuum.fit(aspec, aspecerr, type='aspcap')[0] shiftedSpec = bm.shiftFlux(cont, header['VHELIO' + str(visit)]) # Run grid for i in range(nrangeTeffA): gridParam.modelParamA.teff = rangeTeffA[i] componentA = bm.genComponent(gridParam.modelParamA, ipf, ipg) for j in range(nrangeTeffB): gridParam.modelParamB.teff = rangeTeffB[j] componentB = bm.genComponent(gridParam.modelParamB, ipf, ipg) for k in range(nrangeFluxRatio): gridParam.modelParamB.fluxRatio = rangeFluxRatio[k] componentBR = componentB * rangeFluxRatio[k] for l in range(nrangeRVA): gridParam.modelParamA.rv = rangeRVA[l] componentAS = bm.shiftFlux(componentA, rangeRVA[l]) for m in range(nrangeRVB): gridParam.modelParamB.rv = rangeRVB[m] componentBS = bm.shiftFlux(componentBR, rangeRVB[m]) binaryFlux = bm.combineFlux(componentAS, componentBS) chi2[i][j][k][l][m] = calcChi2(binaryFlux, shiftedSpec, conterr) / (len(binaryFlux) - 5.0) gridParam.chi2 = chi2[i][j][k][l][m] fn.write(gridParam.toString()) if (plot is True): restLambda = splot.apStarWavegrid() BinPlot.plotDeltaVCheck(locationID, apogeeID, visit, [ [ restLambda, binaryFlux, 'blue', 'model' ], [ restLambda, cont, 'orange', 'unshifted' ], [ restLambda, shiftedSpec, 'green', 'shifted' ]], [gridParam.modelParamA.teff,gridParam.modelParamB.teff, gridParam.modelParamB.fluxRatio], 'Delta V Shift', folder='grid_deltaVCheck') timeSum+=timer.end() allChi2.append(chi2) fn.close() print('Average visit time: ' + str(round(timeSum/nvisits, 2)) + str('s')) # Get minized values for each visit indices = None for i in range(nvisits): inds = getMinIndicies(allChi2[i]) rangeTeffA = np.arange(visitGridParamsBuffer[i].minTeffA, visitGridParamsBuffer[i].maxTeffA, visitGridParamsBuffer[i].teffStepA) rangeTeffB = np.arange(visitGridParamsBuffer[i].minTeffB, visitGridParamsBuffer[i].maxTeffB, visitGridParamsBuffer[i].teffStepB) rangeFluxRatio = np.arange(visitGridParamsBuffer[i].minFluxRatio, visitGridParamsBuffer[i].maxFluxRatio, visitGridParamsBuffer[i].fluxStep) rangeRVA = np.arange(visitGridParamsBuffer[i].minRVA, visitGridParamsBuffer[i].maxRVA, visitGridParamsBuffer[i].rvAStep) rangeRVB = np.arange(visitGridParamsBuffer[i].minRVB, visitGridParamsBuffer[i].maxRVB, visitGridParamsBuffer[i].rvBStep) nrangeTeffA = len(rangeTeffA) nrangeTeffB = len(rangeTeffB) nrangeFluxRatio = len(rangeFluxRatio) nrangeRVA =len(rangeRVA) nrangeRVB =len(rangeRVB) visitGridParamsBuffer[i].setParams(i + 1, rangeTeffA[inds[0]], rangeTeffB[inds[1]], rangeFluxRatio[inds[2]], rangeRVA[inds[3]], rangeRVB[inds[4]], allChi2[i][inds[0]][inds[1]][inds[2]][inds[3]][inds[4]]) if (indices is None): indices = [i + 1, inds, allChi2[i][inds[0]][inds[1]][inds[2]][inds[3]][inds[4]]] if (allChi2[i][inds[0]][inds[1]][inds[2]][inds[3]][inds[4]] < indices[2]): indices = [i + 1, inds, allChi2[i][inds[0]][inds[1]][inds[2]][inds[3]][inds[4]]] inds = getMinIndicies(allChi2) gridParam = visitGridParamsBuffer[inds[0]] return gridParam, visitGridParamsBuffer
def read_spectra(cluster, teffmin=4000., teffmax=5000., cont_type='cannon', cont_deg=4): """ NAME: read_spectra PURPOSE: Read the APOGEE spectra and their errors for stars in a given cluster INPUT: cluster - Name of the cluster (name in one of the data files) teffmin= (4000.) minimum temperature teffmax= (5000.) maximum temperature cont_type = ('cannon') type of continuum normalization to perform cont_deg= (4) degree polynomial to fit for continuum normalization OUTPUT: (data, spec, specerr) - (full data structure, spectra [nspec,nlam], spectral uncertainties [nspec,nlam]) nlam=7214 on ASPCAP grid HISTORY: 2015-08-13 - Written based on some older code - Bovy (UofT) """ if cluster.upper() in _GCS: data = read_meszarosgcdata() else: data = read_caldata() # Cut to just this cluster and temperature range if 'rc' in cluster.lower(): # Only for NGC 6819 rc = True cluster = cluster[:-2] else: rc = False data = data[data['CLUSTER'] == cluster.upper()] data= data[(data['TEFF'] < teffmax)\ *(data['TEFF'] > teffmin)] if cluster.lower() == 'n6819': g4CN = good4CN(cluster, data) g4CN[10] = False # another one, by hand! if rc: data = data[True - g4CN] # Just those! else: data = data[g4CN] # Just those! # Load all the spectra nspec = len(data) spec = numpy.zeros((nspec, 7214)) specerr = numpy.zeros((nspec, 7214)) # Setup bad pixel mask badcombpixmask= bitmask.badpixmask()\ +2**bitmask.apogee_pixmask_int("SIG_SKYLINE") for ii in range(nspec): sys.stdout.write('\r' + "Loading spectrum %i / %i ...\r" % (ii + 1, nspec)) sys.stdout.flush() spec[ii] = apread.apStar(data['LOCATION_ID'][ii], data['ID'][ii], ext=1, header=False, aspcapWavegrid=True)[_COMBINED_INDEX] specerr[ii] = apread.apStar(data['LOCATION_ID'][ii], data['ID'][ii], ext=2, header=False, aspcapWavegrid=True)[_COMBINED_INDEX] # Inflate uncertainties for bad pixels mask = apread.apStar(data['LOCATION_ID'][ii], data['ID'][ii], ext=3, header=False, aspcapWavegrid=True)[_COMBINED_INDEX] specerr[ii,(mask & (badcombpixmask)) != 0]+=\ 100.*numpy.mean(spec[ii,True-numpy.isnan(spec[ii])]) # Also inflate pixels with high SNR to 0.5% highsnr = spec[ii] / specerr[ii] > 200. specerr[ii, highsnr] = 0.005 * numpy.fabs(spec[ii, highsnr]) # Continuum-normalize cont = continuum.fit(spec[ii], specerr[ii], type=cont_type, deg=cont_deg) spec[ii] /= cont specerr[ii] /= cont specerr[ii, highsnr] = 0.005 # like standard APOGEE reduction sys.stdout.write('\r' + _ERASESTR + '\r') sys.stdout.flush() return (data, spec, specerr)
nan_vals = [i for i in range(len(spec[0])) if np.isnan(spec[0][i])] nan_ranges = [(nan_vals[i] + 1, nan_vals[i+1]) for i in range(len(nan_vals) - 1) if nan_vals[i+1]!=nan_vals[i]+1] print(nan_ranges) specChunk = spec[0][nan_ranges[0][0]:nan_ranges[0][1]] errChunk = err[0][nan_ranges[0][0]:nan_ranges[0][1]]''' aspec= apread.apStar(locationID, apogeeID, ext=1, header=False)[1] aspecerr= apread.apStar(locationID, apogeeID, ext=2, header=False)[1] # Input needs to be (nspec,nwave) aspec= np.reshape(aspec,(1,len(aspec))) aspecerr= np.reshape(aspecerr,(1,len(aspecerr))) # Fit the continuum from apogee.spec import continuum cont= continuum.fit(aspec,aspecerr,type='aspcap') cspec= apread.aspcapStar(locationID, apogeeID,ext=1,header=False) import apogee.spec.plot as splot splot.waveregions(aspec[0]/cont[0]) splot.waveregions(cspec,overplot=True) '''params = ferre.fit(locationID, apogeeID, teff=teff1, fixteff=True, logg=logg, fixlogg=True, metals=metals, fixmetals=False, am=am, fixam=False, nm=nm, fixnm=False, cm=cm, fixcm=False, verbose=True) '''
def read_spectra(cluster,teffmin=4000.,teffmax=5000.,cont_type='cannon', cont_deg=4): """ NAME: read_spectra PURPOSE: Read the APOGEE spectra and their errors for stars in a given cluster INPUT: cluster - Name of the cluster (name in one of the data files) teffmin= (4000.) minimum temperature teffmax= (5000.) maximum temperature cont_type = ('cannon') type of continuum normalization to perform cont_deg= (4) degree polynomial to fit for continuum normalization OUTPUT: (data, spec, specerr) - (full data structure, spectra [nspec,nlam], spectral uncertainties [nspec,nlam]) nlam=7214 on ASPCAP grid HISTORY: 2015-08-13 - Written based on some older code - Bovy (UofT) """ if cluster.upper() in _GCS: data= read_meszarosgcdata() else: data= read_caldata() # Cut to just this cluster and temperature range if 'rc' in cluster.lower(): # Only for NGC 6819 rc= True cluster= cluster[:-2] else: rc= False data= data[data['CLUSTER'] == cluster.upper()] data= data[(data['TEFF'] < teffmax)\ *(data['TEFF'] > teffmin)] if cluster.lower() == 'n6819': g4CN= good4CN(cluster,data) g4CN[10]= False # another one, by hand! if rc: data= data[True-g4CN] # Just those! else: data= data[g4CN] # Just those! # Load all the spectra nspec= len(data) spec= numpy.zeros((nspec,7214)) specerr= numpy.zeros((nspec,7214)) # Setup bad pixel mask badcombpixmask= bitmask.badpixmask()\ +2**bitmask.apogee_pixmask_int("SIG_SKYLINE") for ii in range(nspec): sys.stdout.write('\r'+"Loading spectrum %i / %i ...\r" % (ii+1,nspec)) sys.stdout.flush() spec[ii]= apread.apStar(data['LOCATION_ID'][ii], data['ID'][ii], ext=1,header=False, aspcapWavegrid=True)[_COMBINED_INDEX] specerr[ii]= apread.apStar(data['LOCATION_ID'][ii], data['ID'][ii], ext=2,header=False, aspcapWavegrid=True)[_COMBINED_INDEX] # Inflate uncertainties for bad pixels mask= apread.apStar(data['LOCATION_ID'][ii], data['ID'][ii], ext=3,header=False, aspcapWavegrid=True)[_COMBINED_INDEX] specerr[ii,(mask & (badcombpixmask)) != 0]+=\ 100.*numpy.mean(spec[ii,True-numpy.isnan(spec[ii])]) # Also inflate pixels with high SNR to 0.5% highsnr= spec[ii]/specerr[ii] > 200. specerr[ii,highsnr]= 0.005*numpy.fabs(spec[ii,highsnr]) # Continuum-normalize cont= continuum.fit(spec[ii],specerr[ii],type=cont_type,deg=cont_deg) spec[ii]/= cont specerr[ii]/= cont specerr[ii,highsnr]= 0.005 # like standard APOGEE reduction sys.stdout.write('\r'+_ERASESTR+'\r') sys.stdout.flush() return (data,spec,specerr)
apogeeID = "2M03441568+3231282" restLambda = splot.apStarWavegrid() visit = 1 badheader, header = apread.apStar(locationID, apogeeID, ext=0, header=True) gridParam = GridParam(locationID, apogeeID) gridParam.constructParams() spec = apread.apStar(locationID, apogeeID, ext=1, header=False)[1 + visit] specerr = apread.apStar(locationID, apogeeID, ext=2, header=False)[1 + visit] # plt.plot(restLambda, spec) aspec = np.reshape(spec, (1, len(spec))) aspecerr = np.reshape(specerr, (1, len(specerr))) cont = spec / continuum.fit(aspec, aspecerr, type="aspcap")[0] conterr = specerr / continuum.fit(aspec, aspecerr, type="aspcap")[0] shiftedSpec = bm.shiftFlux(cont, header["VHELIO" + str(visit)]) conterr = bm.shiftFlux(cont, header["VHELIO" + str(visit)]) BinPlot.plotDeltaVCheck( locationID, apogeeID, visit, [[restLambda, cont, "blue", "Data"]], [gridParam.modelParamA.teff, gridParam.modelParamB.teff], "", folder="model_gen", ) # plt.plot(restLambda, cont) # plt.show() ipg = ferre.Interpolator(lib="GK")